mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
- The code is relatively easy (just disable the checks on Embedding and Head) This cannot be done in the same easy fashion for hidden_dim/head_dim. It's relatively easy on some models (classic MHA) but it would make the other models (MQA) much more complex, and GPTQ quantization another quite hairy piece of code.
438 lines
14 KiB
Python
438 lines
14 KiB
Python
import torch
|
|
import torch.distributed
|
|
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from typing import List
|
|
|
|
HAS_BITS_AND_BYTES = True
|
|
try:
|
|
import bitsandbytes as bnb
|
|
from bitsandbytes.nn import Int8Params
|
|
|
|
except ImportError:
|
|
HAS_BITS_AND_BYTES = False
|
|
|
|
from accelerate import init_empty_weights
|
|
|
|
from text_generation_server.utils.gptq.quant_linear import QuantLinear
|
|
|
|
|
|
# Monkey patching
|
|
@classmethod
|
|
def load_layer_norm(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = nn.Parameter(weight)
|
|
ln.bias = nn.Parameter(bias)
|
|
return ln
|
|
|
|
|
|
@classmethod
|
|
def load_layer_norm_no_bias(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = nn.Parameter(weight)
|
|
ln.bias = None
|
|
return ln
|
|
|
|
|
|
torch.nn.LayerNorm.load = load_layer_norm
|
|
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
|
|
|
|
|
|
class FastLinear(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(weight)
|
|
if bias is not None:
|
|
self.bias = nn.Parameter(bias)
|
|
else:
|
|
self.bias = None
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
if bias:
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(weight, bias)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return F.linear(input, self.weight, self.bias)
|
|
|
|
|
|
class Linear8bitLt(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=True,
|
|
memory_efficient_backward=False,
|
|
threshold=0.0,
|
|
index=None,
|
|
):
|
|
super().__init__()
|
|
assert (
|
|
not memory_efficient_backward
|
|
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
|
self.state = bnb.MatmulLtState()
|
|
self.index = index
|
|
|
|
# Necessary for stacked layers
|
|
self.state.threshold = threshold
|
|
self.state.has_fp16_weights = has_fp16_weights
|
|
self.state.memory_efficient_backward = memory_efficient_backward
|
|
if threshold > 0.0 and not has_fp16_weights:
|
|
self.state.use_pool = True
|
|
|
|
self.weight = Int8Params(
|
|
weight.data,
|
|
has_fp16_weights=has_fp16_weights,
|
|
requires_grad=has_fp16_weights,
|
|
)
|
|
self.weight.cuda(weight.device)
|
|
self.bias = bias
|
|
|
|
def init_8bit_state(self):
|
|
self.state.CB = self.weight.CB
|
|
self.state.SCB = self.weight.SCB
|
|
self.weight.CB = None
|
|
self.weight.SCB = None
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
self.state.is_training = self.training
|
|
if self.weight.CB is not None:
|
|
self.init_8bit_state()
|
|
|
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
|
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
|
|
|
if not self.state.has_fp16_weights:
|
|
if self.state.CB is not None and self.state.CxB is not None:
|
|
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
|
# we no longer need the row-major weight
|
|
del self.state.CB
|
|
self.weight.data = self.state.CxB
|
|
return out
|
|
|
|
|
|
def get_linear(weight, bias, quantize):
|
|
if quantize is None:
|
|
linear = FastLinear(weight, bias)
|
|
elif quantize == "bitsandbytes":
|
|
linear = Linear8bitLt(
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=False,
|
|
threshold=6.0,
|
|
)
|
|
if bias is not None:
|
|
linear.bias = nn.Parameter(bias)
|
|
elif quantize == "gptq":
|
|
try:
|
|
qweight, qzeros, scales, g_idx, bits, groupsize = weight
|
|
except Exception:
|
|
raise NotImplementedError(
|
|
f"The passed weight is not `gptq` compatible, loader needs to be updated."
|
|
)
|
|
|
|
linear = QuantLinear(
|
|
qweight,
|
|
qzeros,
|
|
scales,
|
|
g_idx,
|
|
bias,
|
|
bits,
|
|
groupsize,
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
|
return linear
|
|
|
|
|
|
class SuperLayer(nn.Module):
|
|
def __init__(self, linear):
|
|
super().__init__()
|
|
self.linear = linear
|
|
|
|
def forward(self, x):
|
|
return self.linear.forward(x)
|
|
|
|
|
|
class TensorParallelHead(SuperLayer):
|
|
def __init__(self, linear, process_group, should_gather: bool):
|
|
super().__init__(linear)
|
|
self.process_group = process_group
|
|
self.should_gather = should_gather
|
|
|
|
@staticmethod
|
|
def load(config, prefix: str, weights):
|
|
if weights.process_group.size() > 1:
|
|
try:
|
|
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
|
|
should_gather = True
|
|
except AssertionError:
|
|
# If the vocab size is not divisible by number of shards
|
|
# just load the entire thing.
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
should_gather = False
|
|
else:
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
should_gather = False
|
|
|
|
# GPTQ doesn't quantize heads (nor embeddings)
|
|
if config.quantize == "gptq":
|
|
quantize = None
|
|
else:
|
|
quantize = config.quantize
|
|
return TensorParallelHead(
|
|
get_linear(weight, bias=None, quantize=quantize),
|
|
process_group=weights.process_group,
|
|
should_gather=should_gather,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
if not self.should_gather:
|
|
return super().forward(input)
|
|
|
|
world_size = self.process_group.size()
|
|
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
|
out_dim = self.linear.weight.shape[0]
|
|
|
|
if input.shape[0] == 1:
|
|
world_out = input.new_empty(1, out_dim * world_size)
|
|
local_out = input.new_empty(1, out_dim)
|
|
gather_input = local_out
|
|
else:
|
|
world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
|
gather_input = input.new_empty(out_dim, input.shape[0])
|
|
local_out = gather_input.T
|
|
|
|
torch.mm(input, self.linear.weight.T, out=local_out)
|
|
|
|
torch.distributed.all_gather_into_tensor(
|
|
world_out, gather_input, group=self.process_group
|
|
)
|
|
|
|
if input.shape[0] == 1:
|
|
return world_out
|
|
return world_out.T
|
|
|
|
output = super().forward(input)
|
|
world_output = [
|
|
torch.empty_like(output) for _ in range(self.process_group.size())
|
|
]
|
|
torch.distributed.all_gather(world_output, output, group=self.process_group)
|
|
world_output = torch.cat(world_output, dim=-1)
|
|
return world_output
|
|
|
|
|
|
class TensorParallelColumnLinear(SuperLayer):
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
return cls.load_multi(config, [prefix], weights, bias, dim=0)
|
|
|
|
@classmethod
|
|
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
|
|
weight = weights.get_multi_weights_col(
|
|
prefixes, quantize=config.quantize, dim=dim
|
|
)
|
|
|
|
if bias:
|
|
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
|
|
bias = torch.cat(b, dim=dim)
|
|
else:
|
|
bias = None
|
|
linear = get_linear(weight, bias, config.quantize)
|
|
return cls(linear)
|
|
|
|
|
|
class TensorParallelRowLinear(SuperLayer):
|
|
def __init__(self, linear, process_group):
|
|
super().__init__(linear)
|
|
self.process_group = process_group
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
|
|
|
if bias and weights.process_group.rank() == 0:
|
|
# Rank is only on the first rank process
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(
|
|
get_linear(weight, bias, config.quantize),
|
|
process_group=weights.process_group,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
out = super().forward(input)
|
|
if self.process_group.size() > 1:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
class TensorParallelEmbedding(nn.Module):
|
|
def __init__(self, prefix: str, weights, reduce=True):
|
|
super().__init__()
|
|
weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
|
|
num_embeddings = weights.get_shape(f"{prefix}.weight")[0]
|
|
|
|
process_group = weights.process_group
|
|
|
|
world_size = process_group.size()
|
|
rank = process_group.rank()
|
|
|
|
block_size = num_embeddings // world_size
|
|
self.min_id = rank * block_size
|
|
self.max_id = min(num_embeddings, (rank + 1) * block_size)
|
|
self.null_idx = block_size
|
|
self.process_group = weights.process_group
|
|
self.reduce = reduce
|
|
|
|
"""Additional 0 entry used for masking"""
|
|
self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
|
# translate for [0, self.max_id - self.min_id[
|
|
input = torch.where(
|
|
(self.min_id > input) | (input >= self.max_id),
|
|
self.null_idx,
|
|
input - self.min_id,
|
|
)
|
|
out = torch.nn.functional.embedding(input, self.weight)
|
|
if self.reduce and self.process_group.size() > 1:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
try:
|
|
import dropout_layer_norm
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 8192:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super(FastLayerNorm, self).forward(hidden_states), residual
|
|
else:
|
|
(
|
|
normed_hidden_states,
|
|
residual,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
self.bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.eps,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
False,
|
|
)
|
|
if residual is None:
|
|
residual = hidden_states
|
|
|
|
return normed_hidden_states, residual
|
|
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
try:
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
import rotary_emb
|
|
|
|
class PositionRotaryEmbedding(nn.Module):
|
|
def __init__(self, inv_freq):
|
|
super().__init__()
|
|
|
|
self.inv_freq = inv_freq
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
|
|
@classmethod
|
|
def static(cls, dim, base, device):
|
|
inv_freq = 1.0 / (
|
|
base
|
|
** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
|
)
|
|
return cls(inv_freq)
|
|
|
|
@classmethod
|
|
def load(cls, prefix, weights):
|
|
# XXX: Always load this in float32 !
|
|
dtype = weights.dtype
|
|
weights.dtype = torch.float32
|
|
inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
|
|
weights.dtype = dtype
|
|
return cls(inv_freq)
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
def get_cos_sin(
|
|
self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
|
|
):
|
|
"""
|
|
Return cos and sin for the asked position ids
|
|
"""
|
|
|
|
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
|
|
|
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
|
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
|
return cos.unsqueeze(1), sin.unsqueeze(1)
|
|
|
|
def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
|
rotary_dim = cos.shape[-1]
|
|
x1 = x[..., :rotary_dim]
|
|
x2 = x[..., rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
|
|
return x
|
|
|
|
except ImportError:
|
|
pass
|