mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 16:32:12 +00:00
* Build faster Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Make --model-gguf optional Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Enable mmap, offload_kqv & flash_attention by default Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update doc Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Better error message Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update doc Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update installed packages Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Save gguf in models/MODEL_ID/model.gguf Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Fix build with Mach-O Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Quantize without llama-quantize Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp and switch to ggml-org Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Remove make-gguf.sh Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Update Cargo.lock Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Support HF_HUB_USER_AGENT_ORIGIN Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Bump llama.cpp Signed-off-by: Adrien Gallouët <angt@huggingface.co> * Add --build-arg llamacpp_native & llamacpp_cpu_arm_arch Signed-off-by: Adrien Gallouët <angt@huggingface.co> --------- Signed-off-by: Adrien Gallouët <angt@huggingface.co>
675 lines
23 KiB
Rust
675 lines
23 KiB
Rust
use crate::llamacpp;
|
|
|
|
use async_trait::async_trait;
|
|
use std::ffi::CString;
|
|
use std::mem::replace;
|
|
use std::str::FromStr;
|
|
use std::sync::{mpsc, Once};
|
|
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
|
|
use text_generation_router::validation::ValidGenerateRequest;
|
|
use text_generation_router::{FinishReason, Token};
|
|
use thiserror::Error;
|
|
use tokenizers::Tokenizer;
|
|
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender};
|
|
use tokio::sync::{oneshot, watch};
|
|
use tokio::task::{spawn, spawn_blocking};
|
|
use tokio::time::{timeout, Duration, Instant};
|
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
|
use tracing::instrument;
|
|
use tracing::{debug, error, info, trace, warn};
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum LlamacppSplitMode {
|
|
GPU(usize),
|
|
Layer,
|
|
Row,
|
|
}
|
|
|
|
impl FromStr for LlamacppSplitMode {
|
|
type Err = String;
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
match s.to_lowercase().as_str() {
|
|
"layer" => Ok(LlamacppSplitMode::Layer),
|
|
"row" => Ok(LlamacppSplitMode::Row),
|
|
_ => match s.parse::<usize>() {
|
|
Ok(n) => Ok(LlamacppSplitMode::GPU(n)),
|
|
Err(_) => Err("Choose a GPU number or `layer` or `row`".to_string()),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, clap::ValueEnum)]
|
|
pub enum LlamacppNuma {
|
|
Disabled,
|
|
Distribute,
|
|
Isolate,
|
|
Numactl,
|
|
Mirror,
|
|
}
|
|
|
|
#[allow(non_camel_case_types)]
|
|
#[derive(Debug, Clone, Copy, clap::ValueEnum)]
|
|
pub enum LlamacppGGMLType {
|
|
F32,
|
|
F16,
|
|
Q4_0,
|
|
Q4_1,
|
|
Q5_0,
|
|
Q5_1,
|
|
Q8_0,
|
|
Q8_1,
|
|
Q2_K,
|
|
Q3_K,
|
|
Q4_K,
|
|
Q5_K,
|
|
Q6_K,
|
|
Q8_K,
|
|
IQ2_XXS,
|
|
IQ2_XS,
|
|
IQ3_XXS,
|
|
IQ1_S,
|
|
IQ4_NL,
|
|
IQ3_S,
|
|
IQ2_S,
|
|
IQ4_XS,
|
|
I8,
|
|
I16,
|
|
I32,
|
|
I64,
|
|
F64,
|
|
IQ1_M,
|
|
BF16,
|
|
TQ1_0,
|
|
TQ2_0,
|
|
}
|
|
|
|
// TODO: macro
|
|
impl LlamacppGGMLType {
|
|
fn to_ggml_type(self) -> llamacpp::ggml_type {
|
|
match self {
|
|
LlamacppGGMLType::F32 => llamacpp::GGML_TYPE_F32,
|
|
LlamacppGGMLType::F16 => llamacpp::GGML_TYPE_F16,
|
|
LlamacppGGMLType::Q4_0 => llamacpp::GGML_TYPE_Q4_0,
|
|
LlamacppGGMLType::Q4_1 => llamacpp::GGML_TYPE_Q4_1,
|
|
LlamacppGGMLType::Q5_0 => llamacpp::GGML_TYPE_Q5_0,
|
|
LlamacppGGMLType::Q5_1 => llamacpp::GGML_TYPE_Q5_1,
|
|
LlamacppGGMLType::Q8_0 => llamacpp::GGML_TYPE_Q8_0,
|
|
LlamacppGGMLType::Q8_1 => llamacpp::GGML_TYPE_Q8_1,
|
|
LlamacppGGMLType::Q2_K => llamacpp::GGML_TYPE_Q2_K,
|
|
LlamacppGGMLType::Q3_K => llamacpp::GGML_TYPE_Q3_K,
|
|
LlamacppGGMLType::Q4_K => llamacpp::GGML_TYPE_Q4_K,
|
|
LlamacppGGMLType::Q5_K => llamacpp::GGML_TYPE_Q5_K,
|
|
LlamacppGGMLType::Q6_K => llamacpp::GGML_TYPE_Q6_K,
|
|
LlamacppGGMLType::Q8_K => llamacpp::GGML_TYPE_Q8_K,
|
|
LlamacppGGMLType::IQ2_XXS => llamacpp::GGML_TYPE_IQ2_XXS,
|
|
LlamacppGGMLType::IQ2_XS => llamacpp::GGML_TYPE_IQ2_XS,
|
|
LlamacppGGMLType::IQ3_XXS => llamacpp::GGML_TYPE_IQ3_XXS,
|
|
LlamacppGGMLType::IQ1_S => llamacpp::GGML_TYPE_IQ1_S,
|
|
LlamacppGGMLType::IQ4_NL => llamacpp::GGML_TYPE_IQ4_NL,
|
|
LlamacppGGMLType::IQ3_S => llamacpp::GGML_TYPE_IQ3_S,
|
|
LlamacppGGMLType::IQ2_S => llamacpp::GGML_TYPE_IQ2_S,
|
|
LlamacppGGMLType::IQ4_XS => llamacpp::GGML_TYPE_IQ4_XS,
|
|
LlamacppGGMLType::I8 => llamacpp::GGML_TYPE_I8,
|
|
LlamacppGGMLType::I16 => llamacpp::GGML_TYPE_I16,
|
|
LlamacppGGMLType::I32 => llamacpp::GGML_TYPE_I32,
|
|
LlamacppGGMLType::I64 => llamacpp::GGML_TYPE_I64,
|
|
LlamacppGGMLType::F64 => llamacpp::GGML_TYPE_F64,
|
|
LlamacppGGMLType::IQ1_M => llamacpp::GGML_TYPE_IQ1_M,
|
|
LlamacppGGMLType::BF16 => llamacpp::GGML_TYPE_BF16,
|
|
LlamacppGGMLType::TQ1_0 => llamacpp::GGML_TYPE_TQ1_0,
|
|
LlamacppGGMLType::TQ2_0 => llamacpp::GGML_TYPE_TQ2_0,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct LlamacppConfig {
|
|
pub model_gguf: String,
|
|
pub max_batch_total_tokens: usize,
|
|
pub max_physical_batch_total_tokens: usize,
|
|
pub max_batch_size: usize,
|
|
pub batch_timeout: Duration,
|
|
pub n_threads: usize,
|
|
pub n_threads_batch: usize,
|
|
pub n_gpu_layers: usize,
|
|
pub split_mode: LlamacppSplitMode,
|
|
pub numa: LlamacppNuma,
|
|
pub defrag_threshold: f32,
|
|
pub use_mmap: bool,
|
|
pub use_mlock: bool,
|
|
pub offload_kqv: bool,
|
|
pub flash_attention: bool,
|
|
pub type_k: LlamacppGGMLType,
|
|
pub type_v: LlamacppGGMLType,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct LlamacppRequest {
|
|
input_ids: Vec<i32>,
|
|
top_k: i32,
|
|
top_p: f32,
|
|
typical_p: f32,
|
|
min_keep: usize,
|
|
temp: f32,
|
|
seed: u32,
|
|
penalty_last_n: i32,
|
|
penalty_repeat: f32,
|
|
penalty_freq: f32,
|
|
penalty_present: f32,
|
|
max_new_tokens: usize,
|
|
tx: UnboundedSender<Result<InferStreamResponse, InferError>>,
|
|
time: Instant,
|
|
}
|
|
|
|
pub struct LlamacppBackend {
|
|
tx: UnboundedSender<LlamacppRequest>,
|
|
status: watch::Receiver<bool>,
|
|
}
|
|
|
|
impl LlamacppRequest {
|
|
fn new(
|
|
from: &ValidGenerateRequest,
|
|
tx: UnboundedSender<Result<InferStreamResponse, InferError>>,
|
|
) -> Option<Self> {
|
|
from.input_ids.as_ref().map(|input_ids| LlamacppRequest {
|
|
input_ids: input_ids.iter().map(|&x| x as i32).collect(),
|
|
top_k: from.parameters.top_k as _,
|
|
top_p: from.parameters.top_p as _,
|
|
typical_p: from.parameters.typical_p as _,
|
|
min_keep: 0, // disabled
|
|
temp: from.parameters.temperature as _,
|
|
seed: from.parameters.seed as _,
|
|
penalty_last_n: 64, // 0 = disabled, -1 = context size
|
|
penalty_repeat: from.parameters.repetition_penalty as _,
|
|
penalty_freq: from.parameters.frequency_penalty as _,
|
|
penalty_present: 0.0, // disabled
|
|
max_new_tokens: from.stopping_parameters.max_new_tokens as _,
|
|
tx,
|
|
time: Instant::now(),
|
|
})
|
|
}
|
|
}
|
|
|
|
struct Llamacpp {
|
|
model: *mut llamacpp::llama_model,
|
|
ctx: *mut llamacpp::llama_context,
|
|
vocab: *const llamacpp::llama_vocab,
|
|
logprobs: Vec<llamacpp::llama_token_data>,
|
|
batch: llamacpp::llama_batch,
|
|
}
|
|
|
|
extern "C" fn llamacpp_log_callback(
|
|
level: llamacpp::ggml_log_level,
|
|
msg: *const std::os::raw::c_char,
|
|
_user_data: *mut std::os::raw::c_void,
|
|
) {
|
|
let cmsg = unsafe { std::ffi::CStr::from_ptr(msg) };
|
|
let rmsg = cmsg.to_string_lossy().trim_end_matches('\n').to_string();
|
|
|
|
match level {
|
|
llamacpp::GGML_LOG_LEVEL_DEBUG => debug!(target: "llamacpp", "{}", rmsg),
|
|
llamacpp::GGML_LOG_LEVEL_INFO => info!(target: "llamacpp", "{}", rmsg),
|
|
llamacpp::GGML_LOG_LEVEL_WARN => warn!(target: "llamacpp", "{}", rmsg),
|
|
llamacpp::GGML_LOG_LEVEL_ERROR => error!(target: "llamacpp", "{}", rmsg),
|
|
_ => trace!(target: "llamacpp", "{}", rmsg),
|
|
}
|
|
}
|
|
|
|
impl Llamacpp {
|
|
fn new(conf: LlamacppConfig) -> Result<Self, BackendError> {
|
|
let gguf = CString::new(conf.model_gguf)?;
|
|
|
|
let model = unsafe {
|
|
let mut params = llamacpp::model_default_params();
|
|
params.n_gpu_layers = conf.n_gpu_layers as _;
|
|
params.split_mode = match conf.split_mode {
|
|
LlamacppSplitMode::GPU(_) => llamacpp::LLAMA_SPLIT_MODE_NONE,
|
|
LlamacppSplitMode::Layer => llamacpp::LLAMA_SPLIT_MODE_LAYER,
|
|
LlamacppSplitMode::Row => llamacpp::LLAMA_SPLIT_MODE_ROW,
|
|
};
|
|
params.main_gpu = match conf.split_mode {
|
|
LlamacppSplitMode::GPU(n) => n as _,
|
|
_ => 0,
|
|
};
|
|
params.use_mmap = conf.use_mmap;
|
|
params.use_mlock = conf.use_mlock;
|
|
llamacpp::model_load_from_file(gguf.as_ptr(), params)
|
|
};
|
|
if model.is_null() {
|
|
return Err(BackendError::Llamacpp("Failed to load model".to_string()));
|
|
}
|
|
let ctx = unsafe {
|
|
let mut params = llamacpp::context_default_params();
|
|
params.n_ctx = conf.max_batch_total_tokens as _;
|
|
params.n_batch = conf.max_batch_total_tokens as _;
|
|
params.n_ubatch = conf.max_physical_batch_total_tokens as _;
|
|
params.n_seq_max = conf.max_batch_size as _;
|
|
params.n_threads = conf.n_threads as _;
|
|
params.n_threads_batch = conf.n_threads_batch as _;
|
|
params.defrag_thold = conf.defrag_threshold;
|
|
params.offload_kqv = conf.offload_kqv;
|
|
params.flash_attn = conf.flash_attention;
|
|
params.type_k = conf.type_k.to_ggml_type();
|
|
params.type_v = conf.type_v.to_ggml_type();
|
|
params.no_perf = true;
|
|
llamacpp::init_from_model(model, params)
|
|
};
|
|
if ctx.is_null() {
|
|
return Err(BackendError::Llamacpp("Failed to init context".to_string()));
|
|
}
|
|
let vocab = unsafe { llamacpp::model_get_vocab(model) };
|
|
if vocab.is_null() {
|
|
return Err(BackendError::Llamacpp("Failed to get vocab".to_string()));
|
|
}
|
|
let n_tokens = unsafe { llamacpp::vocab_n_tokens(vocab) };
|
|
let mut logprobs = Vec::with_capacity(n_tokens as usize);
|
|
|
|
for token in 0..n_tokens {
|
|
logprobs.push(llamacpp::llama_token_data {
|
|
id: token,
|
|
logit: 0.0,
|
|
p: 0.0,
|
|
});
|
|
}
|
|
let batch = unsafe { llamacpp::batch_init(conf.max_batch_total_tokens as _, 0, 1) };
|
|
Ok(Llamacpp {
|
|
model,
|
|
ctx,
|
|
vocab,
|
|
logprobs,
|
|
batch,
|
|
})
|
|
}
|
|
|
|
fn decode(&mut self) -> i32 {
|
|
unsafe { llamacpp::decode(self.ctx, self.batch) }
|
|
}
|
|
|
|
fn clear_kv_cache(&mut self, seq_id: llamacpp::llama_seq_id) {
|
|
unsafe {
|
|
llamacpp::kv_cache_seq_rm(self.ctx, seq_id, -1, -1);
|
|
}
|
|
}
|
|
|
|
fn batch_push(
|
|
&mut self,
|
|
token: llamacpp::llama_token,
|
|
pos: llamacpp::llama_pos,
|
|
seq_id: llamacpp::llama_seq_id,
|
|
logits: bool,
|
|
) -> usize {
|
|
let n = self.batch.n_tokens as usize;
|
|
unsafe {
|
|
*self.batch.token.add(n) = token;
|
|
*self.batch.pos.add(n) = pos;
|
|
*self.batch.n_seq_id.add(n) = 1;
|
|
*(*self.batch.seq_id.add(n)).add(0) = seq_id;
|
|
*self.batch.logits.add(n) = logits as i8;
|
|
}
|
|
self.batch.n_tokens += 1;
|
|
n
|
|
}
|
|
}
|
|
|
|
impl Drop for Llamacpp {
|
|
fn drop(&mut self) {
|
|
if !self.ctx.is_null() {
|
|
unsafe { llamacpp::free(self.ctx) };
|
|
}
|
|
if !self.model.is_null() {
|
|
unsafe { llamacpp::model_free(self.model) };
|
|
}
|
|
unsafe { llamacpp::batch_free(self.batch) };
|
|
}
|
|
}
|
|
|
|
struct LlamacppSampler {
|
|
chain: *mut llamacpp::llama_sampler,
|
|
}
|
|
|
|
impl LlamacppSampler {
|
|
fn new(req: &LlamacppRequest) -> Option<Self> {
|
|
let chain = unsafe {
|
|
let params = llamacpp::sampler_chain_default_params();
|
|
llamacpp::sampler_chain_init(params)
|
|
};
|
|
if chain.is_null() {
|
|
error!("Failed to init sampler");
|
|
return None;
|
|
}
|
|
let (top_k, top_p, typical_p, temp, penalties, dist) = unsafe {
|
|
(
|
|
llamacpp::sampler_init_top_k(req.top_k),
|
|
llamacpp::sampler_init_top_p(req.top_p, req.min_keep),
|
|
llamacpp::sampler_init_typical(req.typical_p, req.min_keep),
|
|
llamacpp::sampler_init_temp(req.temp),
|
|
llamacpp::sampler_init_penalties(
|
|
req.penalty_last_n,
|
|
req.penalty_repeat,
|
|
req.penalty_freq,
|
|
req.penalty_present,
|
|
),
|
|
llamacpp::sampler_init_dist(req.seed),
|
|
)
|
|
};
|
|
let all = &[
|
|
("top_k", top_k),
|
|
("top_p", top_p),
|
|
("typical_p", typical_p),
|
|
("temp", temp),
|
|
("penalties", penalties),
|
|
("dist", dist),
|
|
];
|
|
let mut failed = false;
|
|
|
|
for (k, v) in all {
|
|
if v.is_null() {
|
|
error!("Failed to init {k} sampler");
|
|
failed = true;
|
|
} else {
|
|
unsafe { llamacpp::sampler_chain_add(chain, *v) };
|
|
}
|
|
}
|
|
if failed {
|
|
unsafe { llamacpp::sampler_free(chain) };
|
|
None
|
|
} else {
|
|
Some(LlamacppSampler { chain })
|
|
}
|
|
}
|
|
|
|
fn sample(&self, llamacpp: &mut Llamacpp, idx: usize) -> (llamacpp::llama_token, f32) {
|
|
let logits = unsafe { llamacpp::get_logits_ith(llamacpp.ctx, idx as _) };
|
|
for (token, logprob) in llamacpp.logprobs.iter_mut().enumerate() {
|
|
*logprob = llamacpp::llama_token_data {
|
|
id: token as _,
|
|
logit: unsafe { *logits.add(token) },
|
|
p: 0.0,
|
|
};
|
|
}
|
|
let mut view = llamacpp::llama_token_data_array {
|
|
data: llamacpp.logprobs.as_mut_ptr(),
|
|
size: llamacpp.logprobs.len(),
|
|
selected: -1,
|
|
sorted: false,
|
|
};
|
|
unsafe {
|
|
llamacpp::sampler_apply(self.chain, &mut view);
|
|
let logprob = *view.data.offset(view.selected as _);
|
|
llamacpp::sampler_accept(self.chain, logprob.id);
|
|
(logprob.id, logprob.p.ln())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for LlamacppSampler {
|
|
fn drop(&mut self) {
|
|
if !self.chain.is_null() {
|
|
unsafe { llamacpp::sampler_free(self.chain) };
|
|
}
|
|
}
|
|
}
|
|
|
|
struct LlamacppSeq {
|
|
id: usize,
|
|
batch_pos: usize,
|
|
token: llamacpp::llama_token,
|
|
pos: llamacpp::llama_pos,
|
|
sampler: LlamacppSampler,
|
|
text: String,
|
|
n_new_tokens: usize,
|
|
running: bool,
|
|
}
|
|
|
|
static INIT: Once = Once::new();
|
|
|
|
impl LlamacppBackend {
|
|
pub fn new(
|
|
conf: LlamacppConfig,
|
|
tokenizer: Tokenizer,
|
|
) -> (
|
|
Self,
|
|
oneshot::Receiver<Result<(), BackendError>>,
|
|
watch::Sender<bool>,
|
|
) {
|
|
// Setup llama & export logs, once and for all
|
|
INIT.call_once(|| unsafe {
|
|
llamacpp::log_set(Some(llamacpp_log_callback), std::ptr::null_mut());
|
|
llamacpp::backend_init();
|
|
llamacpp::numa_init(match conf.numa {
|
|
LlamacppNuma::Disabled => llamacpp::GGML_NUMA_STRATEGY_DISABLED,
|
|
LlamacppNuma::Distribute => llamacpp::GGML_NUMA_STRATEGY_DISTRIBUTE,
|
|
LlamacppNuma::Isolate => llamacpp::GGML_NUMA_STRATEGY_ISOLATE,
|
|
LlamacppNuma::Numactl => llamacpp::GGML_NUMA_STRATEGY_NUMACTL,
|
|
LlamacppNuma::Mirror => llamacpp::GGML_NUMA_STRATEGY_MIRROR,
|
|
});
|
|
});
|
|
|
|
let (status_tx, status_rx) = watch::channel(false);
|
|
let (shutdown_tx, shutdown_rx) = watch::channel(false);
|
|
let (ok_tx, ok_rx) = oneshot::channel();
|
|
let (tx, mut rx) = unbounded_channel::<LlamacppRequest>();
|
|
let (sync_tx, sync_rx) = mpsc::channel();
|
|
|
|
spawn(async move {
|
|
let mut n_tokens = 0;
|
|
let mut requests = Vec::with_capacity(conf.max_batch_size);
|
|
|
|
let flush = |requests: &mut Vec<_>, n_tokens: &mut usize| {
|
|
if !requests.is_empty() {
|
|
let _ =
|
|
sync_tx.send(replace(requests, Vec::with_capacity(conf.max_batch_size)));
|
|
*n_tokens = 0;
|
|
}
|
|
};
|
|
loop {
|
|
match timeout(conf.batch_timeout, rx.recv()).await {
|
|
Ok(Some(request)) => {
|
|
let n_tokens_to_add = request.input_ids.len();
|
|
|
|
if n_tokens + n_tokens_to_add > conf.max_batch_total_tokens {
|
|
flush(&mut requests, &mut n_tokens);
|
|
}
|
|
n_tokens += n_tokens_to_add;
|
|
requests.push(request);
|
|
|
|
if requests.len() == conf.max_batch_size {
|
|
flush(&mut requests, &mut n_tokens);
|
|
}
|
|
}
|
|
Ok(None) => break, // closed
|
|
Err(_) => flush(&mut requests, &mut n_tokens), // timeout
|
|
}
|
|
}
|
|
});
|
|
|
|
spawn_blocking(move || {
|
|
let mut llamacpp = match Llamacpp::new(conf) {
|
|
Ok(v) => {
|
|
let _ = ok_tx.send(Ok(()));
|
|
v
|
|
}
|
|
Err(e) => {
|
|
let _ = ok_tx.send(Err(e));
|
|
return;
|
|
}
|
|
};
|
|
let vocab = tokenizer.get_added_vocabulary();
|
|
|
|
// health() returns true
|
|
let _ = status_tx.send(true);
|
|
|
|
while let Ok(requests) = sync_rx.recv() {
|
|
if *shutdown_rx.borrow() {
|
|
break;
|
|
}
|
|
let start_time = Instant::now();
|
|
let mut seqs: Vec<LlamacppSeq> = Vec::with_capacity(requests.len());
|
|
llamacpp.batch.n_tokens = 0;
|
|
|
|
for (seq_id, request) in requests.iter().enumerate() {
|
|
debug!("Request: {:?}", request);
|
|
// TODO remove this
|
|
let sampler = match LlamacppSampler::new(request) {
|
|
Some(sampler) => sampler,
|
|
_ => {
|
|
let _ = request.tx.send(Err(InferError::IncompleteGeneration));
|
|
continue;
|
|
}
|
|
};
|
|
let last_pos = request.input_ids.len() - 1;
|
|
|
|
for (pos, &token_id) in request.input_ids.iter().enumerate() {
|
|
llamacpp.batch_push(
|
|
token_id as llamacpp::llama_token,
|
|
pos as llamacpp::llama_pos,
|
|
seq_id as llamacpp::llama_seq_id,
|
|
pos == last_pos, // check samplers
|
|
);
|
|
}
|
|
seqs.push(LlamacppSeq {
|
|
id: seq_id,
|
|
batch_pos: llamacpp.batch.n_tokens as usize - 1,
|
|
token: llamacpp::LLAMA_TOKEN_NULL,
|
|
pos: last_pos as llamacpp::llama_pos + 1,
|
|
sampler,
|
|
text: String::with_capacity(1024),
|
|
n_new_tokens: 0,
|
|
running: true,
|
|
});
|
|
}
|
|
while llamacpp.batch.n_tokens > 0 {
|
|
if llamacpp.decode() != 0 {
|
|
warn!("llama_decode failed, clearing kv cache");
|
|
llamacpp.clear_kv_cache(-1);
|
|
for seq in seqs.iter_mut() {
|
|
let _ = requests[seq.id]
|
|
.tx
|
|
.send(Err(InferError::IncompleteGeneration));
|
|
seq.running = false;
|
|
}
|
|
break;
|
|
}
|
|
for seq in seqs.iter_mut() {
|
|
if !seq.running {
|
|
continue;
|
|
}
|
|
let (next, logprob) = seq.sampler.sample(&mut llamacpp, seq.batch_pos);
|
|
seq.n_new_tokens += 1;
|
|
seq.token = next;
|
|
|
|
let piece = match tokenizer.decode(&[next as u32], false) {
|
|
Ok(piece) => piece,
|
|
Err(e) => {
|
|
error!("Failed to decode token: {e}");
|
|
let _ = requests[seq.id]
|
|
.tx
|
|
.send(Err(InferError::IncompleteGeneration));
|
|
seq.running = false;
|
|
continue;
|
|
}
|
|
};
|
|
let special = vocab.is_special_token(&piece);
|
|
|
|
if !special {
|
|
seq.text.push_str(&piece);
|
|
}
|
|
let token = Token {
|
|
id: next as _,
|
|
text: piece,
|
|
logprob,
|
|
special,
|
|
};
|
|
let finish: Option<FinishReason> = {
|
|
if unsafe { llamacpp::vocab_is_eog(llamacpp.vocab, next) } {
|
|
Some(FinishReason::EndOfSequenceToken)
|
|
} else if seq.n_new_tokens == requests[seq.id].max_new_tokens {
|
|
Some(FinishReason::Length)
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
if let Some(reason) = finish {
|
|
let _ = requests[seq.id].tx.send(Ok(InferStreamResponse::End {
|
|
token,
|
|
top_tokens: vec![],
|
|
generated_text: GeneratedText {
|
|
text: seq.text.clone(),
|
|
generated_tokens: seq.n_new_tokens as _,
|
|
finish_reason: reason,
|
|
seed: Some(requests[seq.id].seed as _),
|
|
},
|
|
start: start_time,
|
|
queued: requests[seq.id].time,
|
|
}));
|
|
seq.running = false;
|
|
continue;
|
|
}
|
|
let _ = requests[seq.id]
|
|
.tx
|
|
.send(Ok(InferStreamResponse::Intermediate {
|
|
token,
|
|
top_tokens: vec![],
|
|
}));
|
|
}
|
|
// generate a new batch
|
|
llamacpp.batch.n_tokens = 0;
|
|
|
|
for seq in seqs.iter_mut() {
|
|
if seq.running {
|
|
seq.batch_pos =
|
|
llamacpp.batch_push(seq.token, seq.pos, seq.id as _, true);
|
|
seq.pos += 1;
|
|
} else {
|
|
llamacpp.clear_kv_cache(seq.id as _);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
(
|
|
Self {
|
|
tx,
|
|
status: status_rx,
|
|
},
|
|
ok_rx,
|
|
shutdown_tx,
|
|
)
|
|
}
|
|
}
|
|
|
|
#[async_trait]
|
|
impl Backend for LlamacppBackend {
|
|
#[instrument(skip_all)]
|
|
fn schedule(
|
|
&self,
|
|
request: ValidGenerateRequest,
|
|
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
|
|
debug!(?request);
|
|
let (tx, rx) = unbounded_channel::<Result<InferStreamResponse, InferError>>();
|
|
match LlamacppRequest::new(&request, tx) {
|
|
Some(v) => match self.tx.send(v) {
|
|
Err(e) => Err(InferError::GenerationError(e.to_string())),
|
|
_ => Ok(UnboundedReceiverStream::new(rx)),
|
|
},
|
|
_ => Err(InferError::GenerationError("Bad request".to_string())),
|
|
}
|
|
}
|
|
|
|
async fn health(&self, _: bool) -> bool {
|
|
*self.status.borrow()
|
|
}
|
|
|
|
fn name(&self) -> &'static str {
|
|
"llamacpp"
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Error)]
|
|
pub enum BackendError {
|
|
#[error("CString error: {0}")]
|
|
CStringError(#[from] std::ffi::NulError),
|
|
#[error("Llamacpp error: {0}")]
|
|
Llamacpp(String),
|
|
}
|