mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
<!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Joshua Rosenkranz <joshua.rosenkranz@gmail.com>
173 lines
5.8 KiB
Python
173 lines
5.8 KiB
Python
import torch
|
|
import os
|
|
|
|
from loguru import logger
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.models.auto import modeling_auto
|
|
from huggingface_hub import hf_hub_download, HfApi
|
|
from typing import Optional
|
|
from pathlib import Path
|
|
|
|
# Needed to properly setup habana_frameworks
|
|
import text_generation_server.habana_quantization_env as hq_env
|
|
|
|
from text_generation_server.utils.speculate import get_speculate, set_speculate
|
|
from text_generation_server.models.model import Model
|
|
from text_generation_server.models.causal_lm import CausalLM
|
|
from text_generation_server.models.bloom import BLOOM
|
|
from text_generation_server.models.starcoder import StarCoder
|
|
|
|
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
|
|
|
|
|
# Disable gradients
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
def get_model(
|
|
model_id: str,
|
|
revision: Optional[str],
|
|
speculate: Optional[int],
|
|
dtype: Optional[torch.dtype],
|
|
trust_remote_code: bool,
|
|
) -> Model:
|
|
adapt_transformers_to_gaudi()
|
|
|
|
if speculate is not None:
|
|
set_speculate(speculate)
|
|
else:
|
|
set_speculate(0)
|
|
|
|
config_dict, _ = PretrainedConfig.get_config_dict(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
model_type = config_dict.get("model_type", None)
|
|
|
|
speculator = None
|
|
if "medusa_num_heads" in config_dict:
|
|
medusa_model_id = model_id
|
|
medusa_revision = revision
|
|
model_id = config_dict["base_model_name_or_path"]
|
|
revision = "main"
|
|
speculate_medusa = config_dict["medusa_num_heads"]
|
|
if speculate is not None:
|
|
if speculate > speculate_medusa:
|
|
raise RuntimeError(
|
|
f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
|
|
)
|
|
else:
|
|
set_speculate(speculate)
|
|
else:
|
|
set_speculate(speculate_medusa)
|
|
|
|
config_dict, _ = PretrainedConfig.get_config_dict(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
# Reload model type from parent.
|
|
model_type = config_dict.get("model_type", None)
|
|
is_local = Path(medusa_model_id).exists()
|
|
if not is_local:
|
|
medusa_config = hf_hub_download(
|
|
medusa_model_id, revision=medusa_revision, filename="config.json"
|
|
)
|
|
hf_hub_download(
|
|
medusa_model_id,
|
|
revision=medusa_revision,
|
|
filename="medusa_lm_head.safetensors",
|
|
)
|
|
speculator = {
|
|
"path": Path(medusa_config).parent,
|
|
"model_paths": ["medusa_lm_head.safetensors"],
|
|
}
|
|
else:
|
|
speculator = {
|
|
"path": Path(medusa_model_id),
|
|
"model_paths": ["medusa_lm_head.safetensors"],
|
|
}
|
|
|
|
method = "medusa"
|
|
elif model_type == "mlp_speculator":
|
|
mlp_model_id = model_id
|
|
mlp_revision = revision
|
|
model_id = config_dict["base_model_name_or_path"]
|
|
revision = "main"
|
|
speculate_mlp = config_dict["n_predict"]
|
|
if speculate is not None:
|
|
if speculate > speculate_mlp:
|
|
raise RuntimeError(
|
|
f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
|
|
)
|
|
else:
|
|
set_speculate(speculate)
|
|
else:
|
|
set_speculate(speculate_mlp)
|
|
|
|
config_dict, _ = PretrainedConfig.get_config_dict(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
# Reload model type from parent.
|
|
model_type = config_dict.get("model_type", None)
|
|
is_local = Path(mlp_model_id).exists()
|
|
extension = ".safetensors"
|
|
if not is_local:
|
|
mlp_speculator_config = hf_hub_download(
|
|
mlp_model_id, revision=mlp_revision, filename="config.json"
|
|
)
|
|
api = HfApi()
|
|
info = api.model_info(mlp_model_id, revision=mlp_revision)
|
|
filenames = [
|
|
s.rfilename
|
|
for s in info.siblings
|
|
if s.rfilename.endswith(extension)
|
|
and len(s.rfilename.split("/")) == 1
|
|
and "arguments" not in s.rfilename
|
|
and "args" not in s.rfilename
|
|
and "training" not in s.rfilename
|
|
]
|
|
for filename in filenames:
|
|
hf_hub_download(
|
|
mlp_model_id,
|
|
revision=mlp_revision,
|
|
filename=filename,
|
|
)
|
|
speculator = {
|
|
"path": Path(mlp_speculator_config).parent,
|
|
"model_paths": filenames,
|
|
}
|
|
else:
|
|
speculator = Path(mlp_model_id)
|
|
filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
|
|
speculator = {"path": speculator, "model_paths": filenames}
|
|
method = "mlp_speculator"
|
|
else:
|
|
method = "n-gram"
|
|
|
|
speculate = get_speculate()
|
|
if speculate > 0:
|
|
logger.info(f"Using speculation {method} with {speculate} input ids.")
|
|
|
|
model_type = config_dict["model_type"]
|
|
|
|
if model_type == "gpt_bigcode":
|
|
return StarCoder(model_id, revision, dtype)
|
|
|
|
if model_type == "bloom":
|
|
return BLOOM(
|
|
model_id,
|
|
revision,
|
|
speculator=speculator,
|
|
dtype=dtype,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
|
|
return CausalLM(
|
|
model_id,
|
|
revision,
|
|
speculator=speculator,
|
|
dtype=dtype,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
raise ValueError(f"Unsupported model type {model_type}")
|