text-generation-inference/server/text_generation_server/models/custom_modeling/siglip.py
drbh 40213c957f
Pali gemma modeling (#1895)
This PR adds paligemma modeling code

Blog post: https://huggingface.co/blog/paligemma
Transformers PR: https://github.com/huggingface/transformers/pull/30814

install the latest changes and run with
```bash
# get the weights
# text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf

# run TGI
text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf
```


basic example sending various requests
```python
from huggingface_hub import InferenceClient

client = InferenceClient("http://127.0.0.1:3000")


images = [
    "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png",
]

prompts = [
    "What animal is in this image?",
    "Name three colors in this image.",
    "What are 10 colors in this image?",
    "Where is the cow standing?",
    "answer en Where is the cow standing?",
    "Is there a bird in the image?",
    "Is ther a cow in the image?",
    "Is there a rabbit in the image?",
    "how many birds are in the image?",
    "how many rabbits are in the image?",
]

for img in images:
    print(f"\nImage: {img.split('/')[-1]}")
    for prompt in prompts:
        inputs = f"![]({img}){prompt}\n"
        json_data = {
            "inputs": inputs,
            "parameters": {
                "max_new_tokens": 30,
                "do_sample": False,
            },
        }
        generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False)
        print([f"{prompt}\n{generated_output}"])

```

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-16 06:58:47 +02:00

566 lines
21 KiB
Python

from typing import Optional, Tuple, Union
import math
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import (
_create_4d_causal_attention_mask,
_prepare_4d_attention_mask,
)
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
)
from transformers import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
from text_generation_server.layers.tensor_parallel import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, prefix, config: SiglipVisionConfig, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.patch_embedding.bias = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.bias"), requires_grad=False
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches
self.position_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.position_embedding", weights=weights
)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions, device=weights.device).expand((1, -1)),
persistent=False,
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
patch_embeds = self.patch_embedding(
pixel_values
) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(
config.max_position_embeddings, embed_dim
)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).expand((1, -1)),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = (
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.head_size = self.head_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.num_heads = self.num_heads // weights.process_group.size()
self.embed_dim = self.embed_dim // weights.process_group.size()
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.k_proj", weights=weights, bias=True
)
self.v_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.v_proj", weights=weights, bias=True
)
self.q_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.q_proj", weights=weights, bias=True
)
self.out_proj = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
# scale post matmul
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) * self.scale
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = (
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attention_mask
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(attn_weights.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class SiglipMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load( # config.hidden_size, config.intermediate_size
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load( # config.intermediate_size, config.hidden_size
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(self, prefix, config: SiglipConfig, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
)
self.mlp = SiglipMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if output_attentions:
return hidden_states, attn_weights
return hidden_states, None
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, prefix, config: SiglipVisionConfig, weights):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True
)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(prefix, config, weights)
def forward(self, hidden_state):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
import warnings
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0,
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
from torch.nn.init import _calculate_fan_in_and_fan_out
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
from transformers import PreTrainedModel
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = (
self.config.vision_config.hidden_size
if isinstance(self.config, SiglipConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
nn.init.xavier_uniform_(module.probe.data)
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, SiglipModel):
logit_scale_init = torch.log(torch.tensor(1.0))
module.logit_scale.data.fill_(logit_scale_init)
module.logit_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, prefix, config: SiglipConfig, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
SiglipEncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
)
for i in range(config.num_hidden_layers)
]
)
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
hidden_states, _ = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
return hidden_states
class SiglipVisionTransformer(nn.Module):
def __init__(self, prefix, config: SiglipVisionConfig, weights):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.encoder = SiglipEncoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
):
r"""
Returns:
"""
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
# NOTE: up until this point, the code logits are exactly
# the same as the transformers code. The values evaulate
# slightly differently in our encoder layer.
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
)
last_hidden_state = encoder_outputs
post_last_hidden_state = self.post_layernorm(last_hidden_state)
return BaseModelOutputWithPooling(
last_hidden_state=post_last_hidden_state,
# pooler_output=pooled_output,
# hidden_states=encoder_outputs,
)