mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 06:12:07 +00:00
324 lines
16 KiB
Python
324 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Idefics model configuration"""
|
|
import copy
|
|
|
|
from transformers import PretrainedConfig
|
|
|
|
IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"HuggingFaceM4/idefics-9b": "https://huggingface.co/HuggingFaceM4/idefics-9b/blob/main/config.json",
|
|
"HuggingFaceM4/idefics-80b": "https://huggingface.co/HuggingFaceM4/idefics-80b/blob/main/config.json",
|
|
}
|
|
|
|
|
|
class IdeficsVisionConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
|
|
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Idefics-9B.
|
|
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`)
|
|
image_size (`int`, *optional*, defaults to 224):
|
|
The size (resolution) of each image.
|
|
intermediate_size (`int`, *optional*, defaults to 5120):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
patch_size (`int`, *optional*, defaults to 14):
|
|
The size (resolution) of each patch.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
image_num_channels (`int`, *optional*, defaults to `3`):
|
|
Number of image channels.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
|
The epsilon used by the layer normalization layers.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
initializer_factor (`float`, *optional*, defaults to 1.0):
|
|
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
|
|
testing).
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
"""
|
|
model_type = "idefics"
|
|
attribute_map = {
|
|
"hidden_size": "embed_dim",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim=768,
|
|
image_size=224,
|
|
intermediate_size=5120,
|
|
patch_size=14,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=16,
|
|
num_channels=3,
|
|
hidden_act="gelu",
|
|
layer_norm_eps=1e-5,
|
|
attention_dropout=0.0,
|
|
initializer_range=0.02,
|
|
initializer_factor=1.0,
|
|
**kwargs,
|
|
):
|
|
self.embed_dim = embed_dim
|
|
self.image_size = image_size
|
|
self.intermediate_size = intermediate_size
|
|
self.patch_size = patch_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.initializer_factor = initializer_factor
|
|
self.hidden_act = hidden_act
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
class IdeficsPerceiverConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
|
|
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Idefics-9B.
|
|
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
use_resampler (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use the resampler
|
|
resampler_n_latents (`int`, *optional*, defaults to ):
|
|
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
|
resampler_depth (`int`, *optional*, defaults to 6):
|
|
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
|
resampler_n_heads (`int`, *optional*, defaults to 16):
|
|
Number of heads in each Transformer block (for multi-headed self-attention).
|
|
resampler_head_dim (`int`, *optional*, defaults to 96):
|
|
Dimensionality of each head projection in the Transformer block.
|
|
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use qk layer norms in perceiver
|
|
"""
|
|
model_type = "idefics"
|
|
|
|
def __init__(
|
|
self,
|
|
use_resampler=False,
|
|
resampler_n_latents=64,
|
|
resampler_depth=6,
|
|
resampler_n_heads=16,
|
|
resampler_head_dim=96,
|
|
qk_layer_norms_perceiver=False,
|
|
**kwargs,
|
|
):
|
|
self.use_resampler = use_resampler
|
|
self.resampler_n_latents = resampler_n_latents
|
|
self.resampler_depth = resampler_depth
|
|
self.resampler_n_heads = resampler_n_heads
|
|
self.resampler_head_dim = resampler_head_dim
|
|
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
class IdeficsConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
|
|
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Idefics-9B.
|
|
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
additional_vocab_size (`int`, *optional`, defaults to 0):
|
|
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
|
|
are always trainable whereas regular vocab tokens can be frozen or not.
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`~IdeficsModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
|
|
Initialization type for the alphas.
|
|
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
|
|
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
|
|
Attention.
|
|
alpha_type (`str`, *optional*, defaults to `"float"`):
|
|
Whether the gating alphas should be vectors or single floats.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*, defaults to 0)
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 1)
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 2)
|
|
End of stream token id.
|
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
cross_layer_interval (`int`, *optional*, default to 1)
|
|
Interval for cross attention (from text to image) layers.
|
|
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
|
|
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
|
|
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
|
Exceptions to freezing text layers when `freeze_text_layers` is `True`
|
|
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
|
|
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
|
|
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
|
Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
|
|
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
|
|
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
|
|
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
|
|
Example:
|
|
```python
|
|
>>> from transformers import IdeficsModel, IdeficsConfig
|
|
>>> # Initializing a Idefics idefics-9b style configuration
|
|
>>> configuration = IdeficsConfig()
|
|
>>> # Initializing a model from the idefics-9b style configuration
|
|
>>> model = IdeficsModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
model_type = "idefics"
|
|
is_composition = True
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
additional_vocab_size=0,
|
|
hidden_size=4096,
|
|
intermediate_size=11008,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
dropout=0.0,
|
|
hidden_act="silu",
|
|
initializer_range=0.02,
|
|
alpha_initializer="zeros",
|
|
alphas_initializer_range=0.0,
|
|
alpha_type="float",
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
cross_layer_interval=1,
|
|
qk_layer_norms=False,
|
|
freeze_text_layers=True,
|
|
freeze_text_module_exceptions=[],
|
|
freeze_lm_head=False,
|
|
freeze_vision_layers=True,
|
|
freeze_vision_module_exceptions=[],
|
|
use_resampler=False,
|
|
vision_config=None,
|
|
perceiver_config=None,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.additional_vocab_size = additional_vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.dropout = dropout
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.alpha_initializer = alpha_initializer
|
|
self.alphas_initializer_range = alphas_initializer_range
|
|
self.alpha_type = alpha_type
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
|
|
self.cross_layer_interval = cross_layer_interval
|
|
self.qk_layer_norms = qk_layer_norms
|
|
self.freeze_vision_layers = freeze_vision_layers
|
|
|
|
self.freeze_text_layers = freeze_text_layers
|
|
self.freeze_text_module_exceptions = freeze_text_module_exceptions
|
|
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
|
|
self.freeze_lm_head = freeze_lm_head
|
|
|
|
self.use_resampler = use_resampler
|
|
|
|
if perceiver_config is None:
|
|
self.perceiver_config = IdeficsPerceiverConfig()
|
|
elif isinstance(perceiver_config, dict):
|
|
self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config)
|
|
elif isinstance(perceiver_config, IdeficsPerceiverConfig):
|
|
self.perceiver_config = perceiver_config
|
|
|
|
if vision_config is None:
|
|
self.vision_config = IdeficsVisionConfig()
|
|
elif isinstance(vision_config, dict):
|
|
self.vision_config = IdeficsVisionConfig(**vision_config)
|
|
elif isinstance(vision_config, IdeficsVisionConfig):
|
|
self.vision_config = vision_config
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
|
|
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
|
|
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
|
|
# of this object many attributes have default values and haven't yet been overridden.
|
|
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
|
Returns:
|
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
|
"""
|
|
output = copy.deepcopy(self.__dict__)
|
|
|
|
output["vision_config"] = self.vision_config.to_dict()
|
|
output["perceiver_config"] = self.perceiver_config.to_dict()
|
|
output["model_type"] = self.__class__.model_type
|
|
|
|
return output
|