mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
<!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
186 lines
5.7 KiB
Python
186 lines
5.7 KiB
Python
import torch
|
|
from torch import nn
|
|
from accelerate import init_empty_weights
|
|
from text_generation_server.utils.import_utils import (
|
|
SYSTEM,
|
|
)
|
|
|
|
|
|
# Monkey patching
|
|
@classmethod
|
|
def load_layer_norm(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = torch.nn.Parameter(weight)
|
|
ln.bias = torch.nn.Parameter(bias)
|
|
return ln
|
|
|
|
|
|
@classmethod
|
|
def load_layer_norm_no_bias(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = torch.nn.Parameter(weight)
|
|
ln.bias = None
|
|
return ln
|
|
|
|
|
|
torch.nn.LayerNorm.load = load_layer_norm
|
|
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
|
|
|
|
if SYSTEM == "cuda":
|
|
import dropout_layer_norm
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 8192:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super(FastLayerNorm, self).forward(hidden_states), residual
|
|
else:
|
|
(
|
|
normed_hidden_states,
|
|
residual,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
self.bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.eps,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
False,
|
|
)
|
|
if residual is None:
|
|
residual = hidden_states
|
|
|
|
return normed_hidden_states, residual
|
|
|
|
elif SYSTEM == "rocm":
|
|
from vllm import layernorm_ops
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super().forward(hidden_states), residual
|
|
|
|
elif SYSTEM == "xpu":
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
res_out = hidden_states
|
|
out = ipex.llm.functional.add_layer_norm(
|
|
residual, hidden_states, self.weight, self.bias, self.eps, True
|
|
)
|
|
if residual is not None:
|
|
res_out = residual
|
|
return out, res_out
|
|
|
|
|
|
class FastRMSNorm(nn.Module):
|
|
def __init__(self, weight: torch.Tensor, eps: float):
|
|
super().__init__()
|
|
|
|
self.weight = nn.Parameter(weight)
|
|
self.variance_epsilon = eps
|
|
|
|
@classmethod
|
|
def load(cls, prefix, weights, eps=1e-6):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
return cls(weight, eps)
|
|
|
|
def forward(self, hidden_states, residual=None):
|
|
if SYSTEM == "xpu":
|
|
residual_out = hidden_states
|
|
out = ipex.llm.functional.add_rms_norm(
|
|
residual,
|
|
hidden_states,
|
|
self.weight,
|
|
None,
|
|
self.variance_epsilon,
|
|
True,
|
|
)
|
|
if residual is not None:
|
|
residual_out = residual
|
|
return out, residual_out
|
|
elif hidden_states.shape[-1] > 8192:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(
|
|
variance + self.variance_epsilon
|
|
)
|
|
|
|
# convert into half-precision if necessary
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
hidden_states = hidden_states.to(self.weight.dtype)
|
|
|
|
return self.weight * hidden_states, residual
|
|
elif SYSTEM == "cuda":
|
|
# faster post attention rms norm
|
|
(
|
|
normed_hidden_states,
|
|
res,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.variance_epsilon,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
True, # Activate RMSNorm
|
|
)
|
|
if res is None:
|
|
res = hidden_states
|
|
|
|
return normed_hidden_states, res
|
|
elif SYSTEM == "rocm":
|
|
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
out = torch.empty_like(hidden_states)
|
|
layernorm_ops.rms_norm(
|
|
out,
|
|
hidden_states,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
return out, residual
|
|
else:
|
|
raise ValueError(
|
|
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
|
|
)
|