mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
* wip
wip
refacto
refacto
Initial setup for CXX binding to TRTLLM
Working FFI call for TGI and TRTLLM backend
Remove unused parameters annd force tokenizer name to be set
Overall build TRTLLM and deps through CMake build system
Enable end to end CMake build
First version loading engines and making it ready for inference
Remembering to check how we can detect support for chunked context
Move to latest TensorRT-LLM version
Specify which default log level to use depending on CMake build type
make leader executor mode working
unconditionally call InitializeBackend on the FFI layer
bind to CUDA::nvml to retrieve compute capabilities at runtime
updated logic and comment to detect cuda compute capabilities
implement the Stream method to send new tokens through a callback
use spdlog release 1.14.1 moving forward
update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c
correctly tell cmake to build dependent tensorrt-llm required libraries
create cmake install target to put everything relevant in installation folder
add auth_token CLI argument to provide hf hub authentification token
allow converting huggingface::tokenizers error to TensorRtLlmBackendError
use correct include for spdlog
include guard to build example in cmakelists
working setup of the ffi layer
remove fmt import
use external fmt lib
end to end ffi flow working
make sure to track include/ffi.h to trigger rebuild from cargo
impl the rust backend which currently cannot move the actual computation in background thread
expose shutdown function at ffi layer
impl RwLock scenario for TensorRtLllmBackend
oops missing c++ backend definitions
compute the number of maximum new tokens for each request independently
make sure the context is not dropped in the middle of the async decoding.
remove unnecessary log
add all the necessary plumbery to return the generated content
update invalid doc in cpp file
correctly forward back the log probabilities
remove unneeded scope variable for now
refactor Stream impl for Generation to factorise code
expose the internal missing start/queue timestamp
forward tgi parameters rep/freq penalty
add some more validation about grammar not supported
define a shared struct to hold the result of a decoding step
expose information about potential error happening while decoding
remove logging
add logging in case of decoding error
make sure executor_worker is provided
add initial Dockerfile for TRTLLM backend
add some more information in CMakeLists.txt to correctly install executorWorker
add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper
simplify prebuilt trtllm libraries name definition
do the same name definition stuff for tensorrt_llm_executor_static
leverage pkg-config to probe libraries paths and reuse new install structure from cmake
fix bad copy/past missing nvinfer linkage direction
align all the linker search dependency
add missing pkgconfig folder for MPI in Dockerfile
correctly setup linking search path for runtime layer
fix missing / before tgi lib path
adding missing ld_library_path for cuda stubs in Dockerfile
update tgi entrypoint
commenting out Python part for TensorRT installation
refactored docker image
move to TensorRT-LLM v0.11.0
make docker linter happy with same capitalization rule
fix typo
refactor the compute capabilities detection along with num gpus
update TensorRT-LLM to latest version
update TensorRT install script to latest
update build.rs to link to cuda 12.5
add missing dependant libraries for linking
clean up a bit
install to decoder_attention target
add some custom stuff for nccl linkage
fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time
use std::env::const::ARCH
make sure variable live long enough...
look for cuda 12.5
add some more basic info in README.md
* Rebase.
* Fix autodocs.
* Let's try to enable trtllm backend.
* Ignore backends/v3 by default.
* Fixing client.
* Fix makefile + autodocs.
* Updating the schema thing + redocly.
* Fix trtllm lint.
* Adding pb files ?
* Remove cargo fmt temporarily.
* ?
* Tmp.
* Remove both check + clippy ?
* Backporting telemetry.
* Backporting 457fb0a1
* Remove PB from git.
* Fixing PB with default member backends/client
* update TensorRT-LLM to latest version
* provided None for api_key
* link against libtensorrt_llm and not libtensorrt-llm
---------
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
285 lines
9.7 KiB
Rust
285 lines
9.7 KiB
Rust
/// Single shard Client
|
|
use crate::client::{pb, Chunk};
|
|
use crate::client::{ClientError, Result, WARMUP_IMAGE_BASE64};
|
|
use base64::engine::general_purpose::STANDARD;
|
|
use base64::Engine;
|
|
use grpc_metadata::InjectTelemetryContext;
|
|
use pb::generate::v3::text_generation_service_client::TextGenerationServiceClient;
|
|
use pb::generate::v3::*;
|
|
use std::cmp::min;
|
|
use std::time::Duration;
|
|
use tonic::transport::{Channel, Uri};
|
|
use tracing::instrument;
|
|
|
|
/// Text Generation Inference gRPC client
|
|
#[derive(Debug, Clone)]
|
|
pub struct Client {
|
|
stub: TextGenerationServiceClient<Channel>,
|
|
}
|
|
|
|
impl Client {
|
|
/// Returns a client connected to the given url
|
|
#[allow(dead_code)]
|
|
pub async fn connect(uri: Uri) -> Result<Self> {
|
|
let channel = Channel::builder(uri).connect().await?;
|
|
|
|
Ok(Self {
|
|
stub: TextGenerationServiceClient::new(channel),
|
|
})
|
|
}
|
|
|
|
/// Returns a client connected to the given unix socket
|
|
pub async fn connect_uds(path: String) -> Result<Self> {
|
|
let channel = Channel::from_shared("http://[::]:50051".to_string())
|
|
.unwrap()
|
|
.connect_with_connector(tower::service_fn(move |_: Uri| {
|
|
tokio::net::UnixStream::connect(path.clone())
|
|
}))
|
|
.await?;
|
|
|
|
Ok(Self {
|
|
stub: TextGenerationServiceClient::new(channel),
|
|
})
|
|
}
|
|
|
|
/// Returns a list of uris or unix sockets of all shards
|
|
#[instrument(skip(self))]
|
|
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
|
|
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
|
|
let response = self.stub.service_discovery(request).await.map_err(|_| {
|
|
ClientError::Connection("Server does not support v3 interface".to_string())
|
|
})?;
|
|
let urls = response
|
|
.into_inner()
|
|
.urls
|
|
.into_iter()
|
|
// Remove unix socket prefix
|
|
.map(|url| match url.strip_prefix("unix://") {
|
|
None => url,
|
|
Some(stripped_url) => stripped_url.to_string(),
|
|
})
|
|
.collect();
|
|
Ok(urls)
|
|
}
|
|
|
|
/// Get model info
|
|
#[instrument(skip(self))]
|
|
pub async fn info(&mut self) -> Result<InfoResponse> {
|
|
let request = tonic::Request::new(InfoRequest {}).inject_context();
|
|
let response = self.stub.info(request).await?.into_inner();
|
|
Ok(response)
|
|
}
|
|
|
|
/// Get model health
|
|
#[instrument(skip(self))]
|
|
pub async fn health(&mut self) -> Result<HealthResponse> {
|
|
let request = tonic::Request::new(HealthRequest {}).inject_context();
|
|
let response = self.stub.health(request).await?.into_inner();
|
|
Ok(response)
|
|
}
|
|
|
|
/// Clear the past generations cache
|
|
#[instrument(skip(self))]
|
|
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
|
|
let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context();
|
|
self.stub.clear_cache(request).await?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Filter a cached batch
|
|
#[instrument(skip(self))]
|
|
pub async fn filter_batch(
|
|
&mut self,
|
|
batch_id: u64,
|
|
request_ids: Vec<u64>,
|
|
) -> Result<Option<CachedBatch>> {
|
|
let request = tonic::Request::new(FilterBatchRequest {
|
|
batch_id,
|
|
request_ids,
|
|
})
|
|
.inject_context();
|
|
let filtered_batch = self.stub.filter_batch(request).await?.into_inner();
|
|
Ok(filtered_batch.batch)
|
|
}
|
|
|
|
/// Warmup on a max size batch
|
|
///
|
|
/// Returns the maximum amount of tokens supported by the hardware
|
|
#[instrument(skip_all)]
|
|
pub async fn warmup(
|
|
&mut self,
|
|
max_input_length: u32,
|
|
max_prefill_tokens: u32,
|
|
max_total_tokens: u32,
|
|
max_batch_size: Option<usize>,
|
|
) -> Result<Option<u32>> {
|
|
let mut n_tokens = 0;
|
|
let mut requests = Vec::new();
|
|
// Create requests
|
|
while n_tokens < max_prefill_tokens {
|
|
let truncate = min(max_input_length, max_prefill_tokens - n_tokens);
|
|
|
|
let mut input_chunks = Vec::new();
|
|
input_chunks
|
|
.push(Chunk::Text("_test ".to_string().repeat(max_input_length as usize)).into());
|
|
if n_tokens == 0 {
|
|
input_chunks.push(
|
|
Chunk::Image(Image {
|
|
// Safe unwrap, because we control the data.
|
|
data: STANDARD.decode(WARMUP_IMAGE_BASE64).unwrap(),
|
|
mimetype: "image/jpeg;base64".to_string(),
|
|
})
|
|
.into(),
|
|
);
|
|
}
|
|
|
|
// Send stringly-typed inputs for compatibility for backends that haven't
|
|
// been updated to support chunks.
|
|
|
|
let mut inputs = String::new();
|
|
inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
|
|
if n_tokens == 0 {
|
|
// 1 request is enough to test vision heads.
|
|
// Sending images on other queries messes up easily with truncation.
|
|
inputs.push_str(&format!(
|
|
"",
|
|
));
|
|
}
|
|
|
|
requests.push(Request {
|
|
id: 0,
|
|
inputs,
|
|
input_chunks: Some(Input {
|
|
chunks: input_chunks,
|
|
}),
|
|
// We truncate the input on the server side to be sure that it has the correct size
|
|
truncate,
|
|
// Blocks and slots will be set on the server side if we use paged attention
|
|
blocks: vec![],
|
|
slots: vec![],
|
|
// Set sampling parameters to also take these ops into account in the max memory
|
|
parameters: Some(NextTokenChooserParameters {
|
|
temperature: 0.9,
|
|
top_k: 10,
|
|
top_p: 0.9,
|
|
typical_p: 0.9,
|
|
do_sample: false,
|
|
seed: 0,
|
|
repetition_penalty: 1.2,
|
|
frequency_penalty: 0.1,
|
|
watermark: true,
|
|
grammar: String::new(),
|
|
grammar_type: GrammarType::None as i32,
|
|
}),
|
|
stopping_parameters: Some(StoppingCriteriaParameters {
|
|
max_new_tokens: max_total_tokens - truncate,
|
|
stop_sequences: vec![],
|
|
ignore_eos_token: true,
|
|
}),
|
|
prefill_logprobs: true,
|
|
top_n_tokens: 20,
|
|
adapter_id: None,
|
|
});
|
|
n_tokens += max_input_length;
|
|
|
|
// Check max_batch_size
|
|
if Some(requests.len()) == max_batch_size {
|
|
break;
|
|
}
|
|
}
|
|
|
|
let batch = Batch {
|
|
id: 0,
|
|
size: requests.len() as u32,
|
|
requests,
|
|
max_tokens: max_input_length,
|
|
max_blocks: 0,
|
|
};
|
|
|
|
let request = tonic::Request::new(WarmupRequest {
|
|
batch: Some(batch),
|
|
max_input_length,
|
|
max_prefill_tokens,
|
|
max_total_tokens,
|
|
})
|
|
.inject_context();
|
|
let response = self.stub.warmup(request).await?.into_inner();
|
|
Ok(response.max_supported_total_tokens)
|
|
}
|
|
|
|
/// Generate one token for each request in the given batch
|
|
///
|
|
/// Returns Generation for each request in batch
|
|
/// and the next cached batch
|
|
#[instrument(skip_all, fields(id = &batch.id, size = &batch.size))]
|
|
pub async fn prefill(
|
|
&mut self,
|
|
batch: Batch,
|
|
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
|
|
let request = tonic::Request::new(PrefillRequest { batch: Some(batch) }).inject_context();
|
|
let response = self.stub.prefill(request).await?.into_inner();
|
|
Ok((
|
|
response.generations,
|
|
response.batch,
|
|
PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns),
|
|
))
|
|
}
|
|
|
|
/// Generate one token for each request in the given cached batches
|
|
///
|
|
/// Returns Generation for each request in batches
|
|
/// and the next cached batch
|
|
#[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::<u32>()))]
|
|
pub async fn decode(
|
|
&mut self,
|
|
batches: Vec<CachedBatch>,
|
|
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
|
|
let request = tonic::Request::new(DecodeRequest { batches }).inject_context();
|
|
let response = self.stub.decode(request).await?.into_inner();
|
|
Ok((
|
|
response.generations,
|
|
response.batch,
|
|
DecodeTimings::new(
|
|
response.concat_ns,
|
|
response.forward_ns,
|
|
response.decode_ns,
|
|
response.total_ns,
|
|
),
|
|
))
|
|
}
|
|
}
|
|
|
|
pub struct PrefillTimings {
|
|
pub forward: Duration,
|
|
pub decode: Duration,
|
|
pub total: Duration,
|
|
}
|
|
|
|
impl PrefillTimings {
|
|
fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
|
|
Self {
|
|
forward: Duration::from_nanos(forward_ns),
|
|
decode: Duration::from_nanos(decode_ns),
|
|
total: Duration::from_nanos(total_ns),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct DecodeTimings {
|
|
pub concat: Option<Duration>,
|
|
pub forward: Duration,
|
|
pub decode: Duration,
|
|
pub total: Duration,
|
|
}
|
|
|
|
impl DecodeTimings {
|
|
fn new(concat_ns: Option<u64>, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
|
|
Self {
|
|
concat: concat_ns.map(Duration::from_nanos),
|
|
forward: Duration::from_nanos(forward_ns),
|
|
decode: Duration::from_nanos(decode_ns),
|
|
total: Duration::from_nanos(total_ns),
|
|
}
|
|
}
|
|
}
|