text-generation-inference/server/tests/models/test_model.py
drbh 24ee40d143
feat: support max_image_fetch_size to limit (#3339)
* feat: support max_image_fetch_size to limit

* fix: update model path for test

* fix: adjust model repo id for test again

* fix: apply clippy lints

* fix: clippy fix

* fix: avoid torch build isolation in docker

* fix: bump repo id in flash llama tests

* fix: temporarily avoid problematic repos in tests
2025-11-18 12:29:21 -05:00

84 lines
1.8 KiB
Python

import pytest
import torch
from transformers import AutoTokenizer
from text_generation_server.models import Model
def get_test_model():
class TestModel(Model):
def batch_type(self):
raise NotImplementedError
def generate_token(self, batch):
raise NotImplementedError
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
model = TestModel(
"test_model_id",
torch.nn.Linear(1, 1),
tokenizer,
False,
torch.float32,
torch.device("cpu"),
)
return model
@pytest.mark.private
def test_decode_streaming_english_spaces():
model = get_test_model()
truth = "Hello here, this is a simple test"
all_input_ids = [15043, 1244, 29892, 445, 338, 263, 2560, 1243]
assert (
all_input_ids == model.tokenizer(truth, add_special_tokens=False)["input_ids"]
)
decoded_text = ""
offset = 0
token_offset = 0
for i in range(len(all_input_ids)):
text, offset, token_offset = model.decode_token(
all_input_ids[: i + 1], offset, token_offset
)
decoded_text += text
assert decoded_text == truth
@pytest.mark.private
def test_decode_streaming_chinese_utf8():
model = get_test_model()
truth = "我很感谢你的热情"
all_input_ids = [
30672,
232,
193,
139,
233,
135,
162,
235,
179,
165,
30919,
30210,
234,
134,
176,
30993,
]
decoded_text = ""
offset = 0
token_offset = 0
for i in range(len(all_input_ids)):
text, offset, token_offset = model.decode_token(
all_input_ids[: i + 1], offset, token_offset
)
decoded_text += text
assert decoded_text == truth