text-generation-inference/server/text_generation_server/models/custom_modeling/mamba_modeling.py
Nicolas Patry fd89d9dfae
Refactor layers. (#1866)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-13 12:44:30 +02:00

233 lines
8.4 KiB
Python

import torch
import torch.distributed
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from torch import nn
from typing import Optional, Tuple, Any
from transformers.configuration_utils import PretrainedConfig
import torch.nn.functional as F
from text_generation_server.layers import (
SpeculativeHead,
TensorParallelEmbedding,
FastLinear,
)
from text_generation_server.layers.layernorm import FastRMSNorm
from einops import rearrange
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
import math
from dataclasses import dataclass
@dataclass
class InferenceParams:
"""Inference parameters that are passed to the main model in order
to efficienly calculate and store the context during inference."""
max_seqlen: int
max_batch_size: int
conv_states: torch.Tensor
ssm_states: torch.Tensor
seqlen_offset: int
class MambaConfig(PretrainedConfig):
def __init__(
self,
vocab_size=50280,
d_model=768,
d_state=16,
n_layer=32,
layer_norm_epsilon=1e-5,
tie_word_embeddings=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
expand=2,
dt_rank="auto",
**kwargs,
):
self.vocab_size = vocab_size
self.n_layer = n_layer
self.layer_norm_epsilon = layer_norm_epsilon
self.d_model = d_model
self.d_inner = d_model * 2
self.d_conv = 4
self.d_state = d_state
self.expand = expand
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MambaBlock(nn.Module):
def __init__(self, prefix, config, weights, layer_id):
super().__init__()
self.layer_id = layer_id
self.in_proj = FastLinear.load(config, f"{prefix}.in_proj", weights, bias=False)
self.x_proj = FastLinear.load(config, f"{prefix}.x_proj", weights, bias=False)
self.dt_proj = FastLinear.load(config, f"{prefix}.dt_proj", weights, bias=True)
self.dt_proj_no_bias = FastLinear.load(
config, f"{prefix}.dt_proj", weights, bias=False
)
self.out_proj = FastLinear.load(
config, f"{prefix}.out_proj", weights, bias=False
)
self.conv1d = FastLinear.load(config, f"{prefix}.conv1d", weights, bias=True)
self.negA = -torch.exp(weights.get_tensor(f"{prefix}.A_log").float())
self.D = weights.get_tensor(f"{prefix}.D")
self.activation = "silu"
self.dt_rank = config.dt_rank
self.d_state = config.d_state
self.d_conv = config.d_conv
self.act = nn.SiLU()
# inference_params
def forward(self, hidden_states: torch.Tensor, inference_params=None):
if inference_params.seqlen_offset > 0:
conv_state = inference_params.conv_states[self.layer_id]
ssm_state = inference_params.ssm_states[self.layer_id]
out, conv_state, ssm_state = self.step(hidden_states, conv_state, ssm_state)
return out, conv_state, ssm_state
_, seqlen, _ = hidden_states.shape
projected_states = self.in_proj(hidden_states).transpose(1, 2)
# assert projected_states.shape == [batch_size, 2 * dstate, seqlen], f"{projected_states.shape} [{batch_size}, {dstate}, {seqlen}]"
x, z = projected_states.chunk(2, dim=1)
conv_state = F.pad(x, (self.d_conv - seqlen, 0))
x = causal_conv1d_fn(
x=x,
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation=self.activation,
)
# We're careful here about the layout, to avoid extra transposes.
# We want dt to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
dt, B, C = torch.split(
x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1
)
dt = self.dt_proj.weight @ dt.t()
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
y, last_state = selective_scan_fn(
x,
dt,
self.negA,
B,
C,
self.D.float(),
z=z,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
return_last_state=True,
)
y = rearrange(y, "b d l -> b l d")
attn_outputs = self.out_proj(y)
return attn_outputs, conv_state, last_state
def step(self, hidden_states, conv_state, ssm_state):
xz = self.in_proj(hidden_states.squeeze(1))
x, z = xz.chunk(2, dim=-1) # (B D)
x = causal_conv1d_update(
x,
conv_state,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = F.linear(dt, self.dt_proj.weight)
A = self.negA
y = selective_state_update(
ssm_state,
x,
dt,
A,
B,
C,
self.D,
z=z,
dt_bias=self.dt_proj.bias,
dt_softplus=True,
)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state.clone(), ssm_state.clone()
class ResidualBlock(nn.Module):
def __init__(self, prefix, config, weights, layer_id):
super().__init__()
self.mamba_block = MambaBlock(
prefix=f"{prefix}.mixer", config=config, weights=weights, layer_id=layer_id
)
self.layer_norm = FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.layer_norm_epsilon
)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor] = None,
inference_params: Optional[Any] = None,
):
residual = (hidden_states + residual) if residual is not None else hidden_states
shape = residual.shape
hidden_states, _ = self.layer_norm(residual.view(-1, shape[-1]))
hidden_states, conv_state, last_ssm_state = self.mamba_block(
hidden_states.view(*shape), inference_params
)
return hidden_states, residual, conv_state, last_ssm_state
class MambaModel(nn.Module):
def __init__(self, config, weights):
super().__init__()
prefix = "backbone"
self.embed_tokens = TensorParallelEmbedding(f"{prefix}.embedding", weights)
self.blocks = nn.ModuleList(
[
ResidualBlock(f"{prefix}.layers.{i}", config, weights, layer_id=i)
for i in range(config.n_layer)
]
)
self.norm_f = FastRMSNorm.load(
f"{prefix}.norm_f", weights, eps=config.layer_norm_epsilon
)
self.lm_head = SpeculativeHead.load(config, f"{prefix}.embedding", weights)
self.config = config
def forward(
self, input_ids: torch.Tensor, inference_params=None, residual=None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
hidden_states = self.embed_tokens(input_ids)
for i, block in enumerate(self.blocks):
hidden_states, residual, conv_state, ssm_state = block(
hidden_states, residual, inference_params
)
inference_params.conv_states[i].copy_(conv_state)
inference_params.ssm_states[i].copy_(ssm_state)
hidden_states = (
hidden_states + residual if residual is not None else hidden_states
)
hidden_states, _ = self.norm_f(hidden_states.view(-1, hidden_states.size(-1)))
hidden_states = hidden_states.view(residual.shape)
logits, speculative_logits = self.lm_head(hidden_states)
# update the offset for the next inference using these params
inference_params.seqlen_offset += input_ids.size(1)
return logits, speculative_logits