text-generation-inference/server/text_generation_server/layers/exl2.py
Daniël de Kok 8511669cb2
Move quantized weight handling out of the Weights class (#2194)
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.

This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.

I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
2024-07-09 20:04:03 +02:00

84 lines
2.5 KiB
Python

import torch
from typing import List, Union
from dataclasses import dataclass
from text_generation_server.utils.weights import WeightsLoader, Weights
@dataclass
class Exl2Weight:
"""
Exllama2 exl2 quantized weights.
"""
q_weight: torch.Tensor
q_scale: torch.Tensor
q_invperm: torch.Tensor
q_scale_max: torch.Tensor
q_groups: torch.Tensor
def __post_init__(self):
self.q_scale_max /= 256
self.q_invperm = self.q_invperm.short()
@property
def device(self) -> torch.device:
return self.q_weight.device
class Exl2WeightsLoader(WeightsLoader):
"""Loader for exl2-quantized weights."""
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
raise RuntimeError("Column-packed weights are not supported for exl")
def get_weights_col(self, weights: Weights, prefix: str):
try:
q_weight = weights.get_tensor(f"{prefix}.q_weight")
except RuntimeError:
raise RuntimeError(
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
)
q_scale = weights.get_tensor(f"{prefix}.q_scale")
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
q_groups = weights.get_tensor(f"{prefix}.q_groups")
return Exl2Weight(
q_weight=q_weight,
q_scale=q_scale,
q_invperm=q_invperm,
q_scale_max=q_scale_max,
q_groups=q_groups,
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
raise ValueError("get_multi_weights_col is not supported for exl2")
def get_weights_row(self, weights: Weights, prefix: str):
try:
q_weight = weights.get_tensor(f"{prefix}.q_weight")
except RuntimeError:
raise RuntimeError(
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
)
q_scale = weights.get_tensor(f"{prefix}.q_scale")
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
q_groups = weights.get_tensor(f"{prefix}.q_groups")
return Exl2Weight(
q_weight=q_weight,
q_scale=q_scale,
q_invperm=q_invperm,
q_scale_max=q_scale_max,
q_groups=q_groups,
)