mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 22:32:07 +00:00
* feat: add ruff and resolve issue * fix: update client exports and adjust after rebase * fix: adjust syntax to avoid circular import * fix: adjust client ruff settings * fix: lint and refactor import check and avoid model enum as global names * fix: improve fbgemm_gpu check and lints * fix: update lints * fix: prefer comparing model enum over str * fix: adjust lints and ignore specific rules * fix: avoid unneeded quantize check
818 lines
30 KiB
Python
818 lines
30 KiB
Python
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_attn_mask_utils import (
|
|
_create_4d_causal_attention_mask,
|
|
_prepare_4d_attention_mask,
|
|
)
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPooling,
|
|
)
|
|
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
|
|
|
|
from text_generation_server.layers import (
|
|
TensorParallelEmbedding,
|
|
TensorParallelColumnLinear,
|
|
TensorParallelRowLinear,
|
|
)
|
|
|
|
|
|
class CLIPVisionEmbeddings(nn.Module):
|
|
def __init__(self, prefix, config: CLIPVisionConfig, weights):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
# TODO Should we TP this ?
|
|
self.class_embedding = weights.get_tensor(f"{prefix}.class_embedding")
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
bias=False,
|
|
)
|
|
self.patch_embedding.weight = nn.Parameter(
|
|
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
self.position_embedding = TensorParallelEmbedding(
|
|
prefix=f"{prefix}.position_embedding", weights=weights
|
|
)
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(self.num_positions, device=weights.device).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
|
batch_size = pixel_values.shape[0]
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(
|
|
pixel_values.to(dtype=target_dtype)
|
|
) # shape = [*, width, grid, grid]
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
class CLIPTextEmbeddings(nn.Module):
|
|
def __init__(self, config: CLIPTextConfig):
|
|
super().__init__()
|
|
embed_dim = config.hidden_size
|
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
self.position_embedding = nn.Embedding(
|
|
config.max_position_embeddings, embed_dim
|
|
)
|
|
|
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
) -> torch.Tensor:
|
|
seq_length = (
|
|
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.token_embedding(input_ids)
|
|
|
|
position_embeddings = self.position_embedding(position_ids)
|
|
embeddings = inputs_embeds + position_embeddings
|
|
|
|
return embeddings
|
|
|
|
|
|
class CLIPAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, prefix, config, weights):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_size = self.embed_dim // self.num_heads
|
|
if self.head_size * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.num_heads = self.num_heads // weights.process_group.size()
|
|
self.embed_dim = self.embed_dim // weights.process_group.size()
|
|
self.scale = self.head_size**-0.5
|
|
self.dropout = config.attention_dropout
|
|
|
|
self.qkv = TensorParallelColumnLinear.load_multi(
|
|
config,
|
|
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
|
dim=0,
|
|
weights=weights,
|
|
bias=True,
|
|
)
|
|
self.out_proj = TensorParallelRowLinear.load(
|
|
config,
|
|
prefix=f"{prefix}.out_proj",
|
|
weights=weights,
|
|
bias=True,
|
|
)
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return (
|
|
tensor.view(bsz, seq_len, self.num_heads, self.head_size)
|
|
.transpose(1, 2)
|
|
.contiguous()
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
bsz, tgt_len, _ = hidden_states.size()
|
|
|
|
# get query proj
|
|
|
|
qkv = self.qkv(hidden_states)
|
|
query_states, key_states, value_states = qkv.split(
|
|
[
|
|
self.head_size * self.num_heads,
|
|
]
|
|
* 3,
|
|
dim=2,
|
|
)
|
|
query_states = query_states * self.scale
|
|
key_states = self._shape(key_states, -1, bsz)
|
|
value_states = self._shape(value_states, -1, bsz)
|
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_size)
|
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
|
key_states = key_states.view(*proj_shape)
|
|
value_states = value_states.view(*proj_shape)
|
|
|
|
src_len = key_states.size(1)
|
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
|
|
# apply the causal_attention_mask first
|
|
if causal_attention_mask is not None:
|
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
|
f" {causal_attention_mask.size()}"
|
|
)
|
|
attn_weights = (
|
|
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
+ causal_attention_mask
|
|
)
|
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = (
|
|
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
+ attention_mask
|
|
)
|
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
attn_probs = nn.functional.dropout(
|
|
attn_weights, p=self.dropout, training=self.training
|
|
)
|
|
|
|
attn_output = torch.bmm(attn_probs, value_states)
|
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size)
|
|
attn_output = attn_output.transpose(1, 2)
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
return attn_output, None
|
|
|
|
|
|
class CLIPMLP(nn.Module):
|
|
def __init__(self, prefix, config, weights):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
self.fc1 = TensorParallelColumnLinear.load(
|
|
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
|
|
)
|
|
self.fc2 = TensorParallelRowLinear.load(
|
|
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class CLIPEncoderLayer(nn.Module):
|
|
def __init__(self, prefix, config: CLIPConfig, weights):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = CLIPAttention(
|
|
prefix=f"{prefix}.self_attn", config=config, weights=weights
|
|
)
|
|
self.layer_norm1 = nn.LayerNorm.load(
|
|
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
|
|
)
|
|
self.mlp = CLIPMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
|
self.layer_norm2 = nn.LayerNorm.load(
|
|
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
causal_attention_mask: torch.Tensor,
|
|
):
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
`(config.encoder_attention_heads,)`.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CLIPPreTrainedModel(nn.Module):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = CLIPConfig
|
|
base_model_prefix = "clip"
|
|
supports_gradient_checkpointing = True
|
|
|
|
|
|
CLIP_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
"""
|
|
|
|
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
|
"""
|
|
|
|
CLIP_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
|
return_loss (`bool`, *optional*):
|
|
Whether or not to return the contrastive loss.
|
|
"""
|
|
|
|
|
|
class CLIPEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`CLIPEncoderLayer`].
|
|
|
|
Args:
|
|
config: CLIPConfig
|
|
"""
|
|
|
|
def __init__(self, prefix, config: CLIPConfig, weights):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
CLIPEncoderLayer(
|
|
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
|
|
)
|
|
for i in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
"""
|
|
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
hidden_states = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CLIPTextTransformer(nn.Module):
|
|
def __init__(self, prefix: str, config: CLIPTextConfig, weights=None):
|
|
super().__init__()
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
self.embeddings = CLIPTextEmbeddings(config)
|
|
# Initialize weights and apply final processing with `self.post_init()`
|
|
self.encoder = CLIPEncoder(
|
|
prefix=f"{prefix}.encoder", config=config, weights=weights
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
# For `pooled_output` computation
|
|
self.eos_token_id = config.eos_token_id
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
if input_ids is None:
|
|
raise ValueError("You have to specify input_ids")
|
|
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
|
|
|
# CLIP's text model uses causal mask, prepare it here.
|
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
|
causal_attention_mask = _create_4d_causal_attention_mask(
|
|
input_shape, hidden_states.dtype, device=hidden_states.device
|
|
)
|
|
# expand attention_mask
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attention_mask = _prepare_4d_attention_mask(
|
|
attention_mask, hidden_states.dtype
|
|
)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
)
|
|
|
|
last_hidden_state = encoder_outputs[0]
|
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
|
|
|
if self.eos_token_id == 2:
|
|
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
|
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
|
# ------------------------------------------------------------
|
|
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
|
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
|
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
|
last_hidden_state[
|
|
torch.arange(
|
|
last_hidden_state.shape[0], device=last_hidden_state.device
|
|
),
|
|
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(
|
|
dim=-1
|
|
),
|
|
]
|
|
else:
|
|
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
|
last_hidden_state[
|
|
torch.arange(
|
|
last_hidden_state.shape[0], device=last_hidden_state.device
|
|
),
|
|
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
|
(
|
|
input_ids.to(dtype=torch.int, device=last_hidden_state.device)
|
|
== self.eos_token_id
|
|
)
|
|
.int()
|
|
.argmax(dim=-1),
|
|
]
|
|
|
|
return last_hidden_state
|
|
|
|
|
|
class CLIPTextModel(CLIPPreTrainedModel):
|
|
config_class = CLIPTextConfig
|
|
|
|
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
|
|
|
def __init__(self, prefix, config: CLIPTextConfig):
|
|
super().__init__(config)
|
|
self.text_model = CLIPTextTransformer(prefix, config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, CLIPTextModel
|
|
|
|
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
|
|
|
>>> outputs = model(**inputs)
|
|
>>> last_hidden_state = outputs.last_hidden_state
|
|
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
|
```"""
|
|
|
|
return self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
|
|
class CLIPVisionTransformer(nn.Module):
|
|
def __init__(self, prefix, config: CLIPVisionConfig, weights):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.embeddings = CLIPVisionEmbeddings(
|
|
prefix=f"{prefix}.embeddings", config=config, weights=weights
|
|
)
|
|
self.pre_layrnorm = nn.LayerNorm.load(
|
|
prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
|
|
)
|
|
self.encoder = CLIPEncoder(
|
|
prefix=f"{prefix}.encoder", config=config, weights=weights
|
|
)
|
|
# self.post_layernorm = nn.LayerNorm.load(prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify pixel_values")
|
|
|
|
hidden_states = self.embeddings(pixel_values)
|
|
hidden_states = self.pre_layrnorm(hidden_states)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
)
|
|
last_hidden_state = encoder_outputs
|
|
# pooled_output = last_hidden_state[:, 0, :]
|
|
# pooled_output = self.post_layernorm(pooled_output)
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
# pooler_output=pooled_output,
|
|
# hidden_states=encoder_outputs,
|
|
)
|
|
|
|
|
|
class CLIPVisionModel(CLIPPreTrainedModel):
|
|
config_class = CLIPVisionConfig
|
|
main_input_name = "pixel_values"
|
|
_no_split_modules = ["CLIPEncoderLayer"]
|
|
|
|
def __init__(self, config: CLIPVisionConfig):
|
|
super().__init__(config)
|
|
self.vision_model = CLIPVisionTransformer(config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.vision_model.embeddings.patch_embedding
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, CLIPVisionModel
|
|
|
|
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt")
|
|
|
|
>>> outputs = model(**inputs)
|
|
>>> last_hidden_state = outputs.last_hidden_state
|
|
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
|
```"""
|
|
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
)
|
|
|
|
|
|
class CLIPModel(nn.Module):
|
|
def __init__(self, prefix, config: CLIPConfig, weights):
|
|
super().__init__()
|
|
text_config = config.text_config
|
|
vision_config = config.vision_config
|
|
|
|
self.projection_dim = config.projection_dim
|
|
self.text_embed_dim = text_config.hidden_size
|
|
self.vision_embed_dim = vision_config.hidden_size
|
|
|
|
self.text_model = CLIPTextTransformer(text_config)
|
|
self.vision_model = CLIPVisionTransformer(vision_config)
|
|
|
|
self.visual_projection = nn.Linear(
|
|
self.vision_embed_dim, self.projection_dim, bias=False
|
|
)
|
|
self.text_projection = nn.Linear(
|
|
self.text_embed_dim, self.projection_dim, bias=False
|
|
)
|
|
self.logit_scale = nn.Parameter(
|
|
torch.tensor(self.config.logit_scale_init_value)
|
|
)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_text_features(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
r"""
|
|
Returns:
|
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
|
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, CLIPModel
|
|
|
|
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
|
>>> text_features = model.get_text_features(**inputs)
|
|
```"""
|
|
text_outputs = self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
pooled_output = text_outputs[1]
|
|
text_features = self.text_projection(pooled_output)
|
|
|
|
return text_features
|
|
|
|
def get_image_features(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
r"""
|
|
Returns:
|
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
|
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, CLIPModel
|
|
|
|
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt")
|
|
|
|
>>> image_features = model.get_image_features(**inputs)
|
|
```"""
|
|
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
|
vision_outputs = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
)
|
|
|
|
pooled_output = vision_outputs[1] # pooled_output
|
|
image_features = self.visual_projection(pooled_output)
|
|
|
|
return image_features
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, CLIPModel
|
|
|
|
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(
|
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
|
... )
|
|
|
|
>>> outputs = model(**inputs)
|
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
|
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
|
```"""
|
|
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
|
vision_outputs = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
)
|
|
|
|
text_outputs = self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
image_embeds = vision_outputs[1]
|
|
image_embeds = self.visual_projection(image_embeds)
|
|
|
|
text_embeds = text_outputs[1]
|
|
text_embeds = self.text_projection(text_embeds)
|
|
|
|
# normalized features
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
|
|
|
# cosine similarity as logits
|
|
logit_scale = self.logit_scale.exp()
|
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
|
logits_per_image = logits_per_text.t()
|
|
|
|
return logits_per_image, logits_per_text
|