text-generation-inference/server/text_generation_server/models/custom_modeling/mamba_modeling.py

291 lines
10 KiB
Python

import torch
import torch.distributed
from torch import nn
from typing import Optional, List, Tuple, Any
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
import torch.nn.functional as F
from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
)
class MambaConfig(PretrainedConfig):
def __init__(
self,
vocab_size=50280,
d_model=768,
n_layer=32,
layer_norm_epsilon=1e-5,
tie_word_embeddings=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.n_layer = n_layer
self.layer_norm_epsilon = layer_norm_epsilon
self.d_model = d_model
self.d_inner = d_model * 2
self.d_conv = 4
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MambaBlock(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
# TODO: use model config to set the dt_rank instead of hardcoding it
self.dt_rank = (config.d_model + 15) // 16
# TODO: improve how we load the conv1d weights
# explore a transposed conv1d that avoids the need for
# a transpose during inference
self.conv1 = nn.Conv1d(
config.d_inner,
config.d_inner,
kernel_size=config.d_conv,
groups=config.d_inner,
padding=config.d_conv - 1,
)
self.conv1.weight = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.weight"))
self.conv1.bias = nn.Parameter(weights.get_tensor(f"{prefix}.conv1d.bias"))
self.dt_proj = TensorParallelColumnLinear.load(
config=config,
prefix=f"{prefix}.dt_proj",
weights=weights,
bias=True,
)
self.in_proj = TensorParallelColumnLinear.load(
config=config,
prefix=f"{prefix}.in_proj",
weights=weights,
bias=False,
)
self.x_proj = TensorParallelColumnLinear.load(
config=config,
prefix=f"{prefix}.x_proj",
weights=weights,
bias=False,
)
self.out_proj = TensorParallelColumnLinear.load(
config=config,
prefix=f"{prefix}.out_proj",
weights=weights,
bias=False,
)
# TODO: improve how we load the weights
self.A_log = nn.Parameter(weights.get_tensor(f"{prefix}.A_log"))
self.D = nn.Parameter(weights.get_tensor(f"{prefix}.D"))
def selective_scan(
self, input_tensor, delta, a_tensor, b_tensor, c_tensor, d_tensor
):
batch_size, sequence_length, input_dim = input_tensor.shape
num_cols = a_tensor.shape[1]
# TODO: revisit this math to avoid the transposes when possible
# reshape and process delta
delta = delta.transpose(1, 2).view((batch_size, input_dim, sequence_length, 1))
exp_delta_a = (delta * a_tensor.view((1, input_dim, 1, num_cols))).exp()
# calc involving delta, b_tensor, and input_tensor
delta_b_input = (
delta
* b_tensor.view((batch_size, 1, sequence_length, num_cols))
* input_tensor.transpose(1, 2).view(
(batch_size, input_dim, sequence_length, 1)
)
)
# init output tensor
output_tensor = torch.zeros(
(batch_size, input_dim, num_cols),
dtype=exp_delta_a.dtype,
device=exp_delta_a.device,
)
# iterate over sequence_length
output_sequence = []
for i in range(sequence_length):
multiplier = exp_delta_a[:, :, i]
output_tensor = (multiplier * output_tensor) + delta_b_input[:, :, i]
y = output_tensor.matmul(c_tensor[:, i, :].unsqueeze(2)).squeeze(2)
output_sequence.append(y)
stacked_output = torch.stack(output_sequence, 1)
return stacked_output + input_tensor * d_tensor
def ssm(self, hidden_states):
_input_dim, num_cols = self.A_log.shape
negative_exponential_a = self.A_log.exp().neg()
d_matrix = self.D
projected_hidden_states = self.x_proj(hidden_states)
# narrow operations for delta, b, and c
delta = projected_hidden_states.narrow(-1, 0, self.dt_rank)
b_matrix = projected_hidden_states.narrow(-1, self.dt_rank, num_cols)
c_matrix = projected_hidden_states.narrow(-1, self.dt_rank + num_cols, num_cols)
# process delta
delta = self.dt_proj(delta)
delta = torch.log(torch.exp(delta) + 1)
# apply selective scan
selective_scan_output = self.selective_scan(
hidden_states, delta, negative_exponential_a, b_matrix, c_matrix, d_matrix
)
return selective_scan_output
def forward(self, index, hidden_states, past_transformed_state):
sequence_length = hidden_states.shape[1]
# minimal amount of new work on single hidden state (previous hidden state are cached)
only_last = hidden_states[:, -1, :]
projected_only_last = self.in_proj(only_last)
transformed_only_last, residual_only_last = torch.chunk(
projected_only_last, 2, dim=-1
)
if past_transformed_state is not None:
# build a new transformed_states tensor with past_transformed_state and transformed_only_last
new_transformed_states = torch.cat(
[past_transformed_state, transformed_only_last.unsqueeze(1)], dim=1
)
transformed_states = new_transformed_states
residual_states = residual_only_last
else:
# prefilling the cache with the last transformed state
projected_states = self.in_proj(hidden_states)
split_states = torch.chunk(projected_states, 2, dim=-1)
transformed_states, residual_states = split_states
# NOTE: we need the past hidden states to produce the correct output
# therefore we cannot simply compute the most recent and append it as we
# did for the transformed states
# TODO: avoid the transpose by using a transposed conv1d
# apply convolution and narrowing operation
conv_output = (
self.conv1(transformed_states.transpose(1, 2))
.narrow(-1, 0, sequence_length)
.transpose(1, 2)
)
# apply silu (Swish) activation function
activated_transformed = F.silu(conv_output)
activated_residual = F.silu(residual_states)
# Subsequent operations
output = self.ssm(activated_transformed)
combined_output = output * activated_residual
return self.out_proj(combined_output), transformed_states
# TODO: prefer a more optimized implementation of RMSNorm if possible
class RMSNorm(nn.Module):
def __init__(self, num_features, eps=1e-8):
super().__init__()
self.num_features = num_features
self.eps = eps
self.scale = nn.Parameter(torch.ones(num_features))
def forward(self, x):
rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
x = x / rms
return self.scale * x
class ResidualBlock(nn.Module):
def __init__(self, layer_id, config, weights):
super().__init__()
self.layer_id = layer_id
self.mamba_block = MambaBlock(
prefix=f"{layer_id}.mixer", config=config, weights=weights
)
self.layer_norm = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.layer_norm.scale = nn.Parameter(
weights.get_tensor(f"{layer_id}.norm.weight")
)
def forward(
self,
index,
hidden_states,
past_transformed_state,
):
residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
attn_outputs, transformed_states = self.mamba_block(
index, hidden_states, past_transformed_state
)
hidden_states = residual + attn_outputs
return hidden_states, transformed_states
class MambaModel(nn.Module):
def __init__(self, config, weights):
super().__init__()
self.tp_rank = weights.process_group.rank()
self.tp_world_size = weights.process_group.size()
self.embed_tokens = TensorParallelEmbedding(
prefix="backbone.embedding", weights=weights
)
self.blocks = nn.ModuleList(
[
ResidualBlock(f"backbone.layers.{layer_id}", config, weights)
for layer_id in range(config.n_layer)
]
)
# TODO: avoid hardcoded sizes and improve how we load the weights
self.norm_f = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.norm_f.scale = nn.Parameter(weights.get_tensor(f"backbone.norm_f.weight"))
# use the same weights for the embedding and the final layer norm
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.lm_head.weight = nn.Parameter(
self.embed_tokens.weight[: config.vocab_size, :]
)
def forward(
self,
input_ids: torch.LongTensor,
past_input_ids: Optional[List[Tuple[torch.FloatTensor]]] = None,
past_transformed_states: Optional[List[Tuple[torch.FloatTensor]]] = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# NOTE: we need all input_ids to compute the correct embeddings
if past_input_ids is not None:
input_ids = past_input_ids
hidden_states = self.embed_tokens(input_ids)
past_transformed_states = (
[None] * len(self.blocks)
if past_transformed_states is None
else past_transformed_states
)
for index, block in enumerate(self.blocks):
hidden_states, transformed_states = block(
index, hidden_states, past_transformed_states[index]
)
past_transformed_states[index] = transformed_states
final_hidden_states = self.norm_f(hidden_states)
after_lm_head = self.lm_head(final_hidden_states)
return after_lm_head, input_ids, past_transformed_states