mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 22:32:07 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Dong Shin <d0104.shin@gmail.com>
1119 lines
39 KiB
Python
1119 lines
39 KiB
Python
import os
|
|
import torch
|
|
import torch.distributed
|
|
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from typing import List, Tuple, Optional
|
|
from loguru import logger
|
|
from functools import lru_cache
|
|
|
|
HAS_BITS_AND_BYTES = True
|
|
try:
|
|
import bitsandbytes as bnb
|
|
from bitsandbytes.nn import Int8Params, Params4bit
|
|
except ImportError:
|
|
HAS_BITS_AND_BYTES = False
|
|
|
|
from accelerate import init_empty_weights
|
|
|
|
from text_generation_server.utils.gptq.quant_linear import QuantLinear
|
|
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
|
|
|
|
HAS_AWQ = True
|
|
try:
|
|
from text_generation_server.utils.awq.quantize.qmodule import WQLinear
|
|
except ImportError:
|
|
HAS_AWQ = False
|
|
|
|
try:
|
|
major, _minor = torch.cuda.get_device_capability()
|
|
except Exception:
|
|
major = 1
|
|
|
|
HAS_EXLLAMA = False
|
|
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
|
|
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
|
|
|
|
if os.getenv("DISABLE_EXLLAMA") == "True":
|
|
HAS_EXLLAMA = False
|
|
elif CAN_EXLLAMA:
|
|
try:
|
|
if V2:
|
|
from text_generation_server.utils.gptq.exllamav2 import (
|
|
QuantLinear as ExllamaQuantLinear,
|
|
create_exllama_buffers,
|
|
set_device,
|
|
)
|
|
|
|
HAS_EXLLAMA = "2"
|
|
else:
|
|
from text_generation_server.utils.gptq.exllama import (
|
|
Ex4bitLinear as ExllamaQuantLinear,
|
|
create_exllama_buffers,
|
|
set_device,
|
|
)
|
|
|
|
HAS_EXLLAMA = "1"
|
|
|
|
except ImportError:
|
|
pass
|
|
|
|
HAS_EETQ = False
|
|
try:
|
|
from EETQ import quant_weights, w8_a16_gemm
|
|
|
|
HAS_EETQ = True
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
# Monkey patching
|
|
@classmethod
|
|
def load_layer_norm(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = nn.Parameter(weight)
|
|
ln.bias = nn.Parameter(bias)
|
|
return ln
|
|
|
|
|
|
@classmethod
|
|
def load_layer_norm_no_bias(cls, prefix, weights, eps):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
with init_empty_weights():
|
|
ln = cls(weight.shape, eps=eps)
|
|
|
|
ln.weight = nn.Parameter(weight)
|
|
ln.bias = None
|
|
return ln
|
|
|
|
|
|
@classmethod
|
|
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
with init_empty_weights():
|
|
conv2d = cls(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
)
|
|
|
|
conv2d.weight = nn.Parameter(weight)
|
|
conv2d.bias = nn.Parameter(bias)
|
|
return conv2d
|
|
|
|
|
|
@classmethod
|
|
def load_conv2d_no_bias(
|
|
cls, prefix, weights, in_channels, out_channels, kernel_size, stride
|
|
):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
with init_empty_weights():
|
|
conv2d = cls(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
)
|
|
|
|
conv2d.weight = nn.Parameter(weight)
|
|
conv2d.bias = None
|
|
return conv2d
|
|
|
|
|
|
torch.nn.Conv2d.load = load_conv2d
|
|
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
|
|
torch.nn.LayerNorm.load = load_layer_norm
|
|
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
|
|
|
|
|
|
class FastLinear(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(weight)
|
|
if bias is not None:
|
|
self.bias = nn.Parameter(bias)
|
|
else:
|
|
self.bias = None
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
if bias:
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(weight, bias)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return F.linear(input, self.weight, self.bias)
|
|
|
|
|
|
class EETQLinear(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
device = weight.device
|
|
if weight.dtype != torch.float16:
|
|
weight = weight.to(dtype=torch.float16)
|
|
weight = torch.t(weight).contiguous().cpu()
|
|
weight, scale = quant_weights(weight, torch.int8, False)
|
|
|
|
self.weight = weight.cuda(device)
|
|
self.scale = scale.cuda(device)
|
|
self.bias = bias.cuda(device) if bias is not None else None
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
output = w8_a16_gemm(input, self.weight, self.scale)
|
|
output = output + self.bias if self.bias is not None else output
|
|
return output
|
|
|
|
|
|
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
|
|
device = weight.device
|
|
# weight, scale = quant_weights(weight, torch.int8, False)
|
|
finfo = torch.finfo(qdtype)
|
|
# Calculate the scale as dtype max divided by absmax
|
|
scale = finfo.max / weight.abs().max().clamp(min=1e-12)
|
|
# scale and clamp the tensor to bring it to
|
|
# the representative range of float8 data type
|
|
# (as default cast is unsaturated)
|
|
qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
|
|
# Return both float8 data and the inverse scale (as float),
|
|
# as both required as inputs to torch._scaled_mm
|
|
qweight = qweight.to(qdtype)
|
|
scale = scale.float().reciprocal()
|
|
return qweight, scale
|
|
|
|
|
|
class Fp8Linear(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
self.dtype = weight.dtype
|
|
self.qweight, self.scale = fp8_quantize(weight)
|
|
|
|
self.bias = bias if bias is not None else None
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
qinput, scale = fp8_quantize(input)
|
|
output, _ = torch._scaled_mm(
|
|
qinput,
|
|
self.qweight.t(),
|
|
out_dtype=self.dtype,
|
|
scale_a=scale,
|
|
scale_b=self.scale,
|
|
bias=self.bias,
|
|
)
|
|
return output
|
|
|
|
|
|
class Linear8bitLt(nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=True,
|
|
memory_efficient_backward=False,
|
|
threshold=0.0,
|
|
index=None,
|
|
):
|
|
super().__init__()
|
|
assert (
|
|
not memory_efficient_backward
|
|
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
|
self.state = bnb.MatmulLtState()
|
|
self.index = index
|
|
|
|
# Necessary for stacked layers
|
|
self.state.threshold = threshold
|
|
self.state.has_fp16_weights = has_fp16_weights
|
|
self.state.memory_efficient_backward = memory_efficient_backward
|
|
if threshold > 0.0 and not has_fp16_weights:
|
|
self.state.use_pool = True
|
|
|
|
self.weight = Int8Params(
|
|
weight.data,
|
|
has_fp16_weights=has_fp16_weights,
|
|
requires_grad=has_fp16_weights,
|
|
)
|
|
self.weight.cuda(weight.device)
|
|
self.bias = bias
|
|
|
|
def init_8bit_state(self):
|
|
self.state.CB = self.weight.CB
|
|
self.state.SCB = self.weight.SCB
|
|
self.weight.CB = None
|
|
self.weight.SCB = None
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
self.state.is_training = self.training
|
|
if self.weight.CB is not None:
|
|
self.init_8bit_state()
|
|
|
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
|
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
|
|
|
if not self.state.has_fp16_weights:
|
|
if self.state.CB is not None and self.state.CxB is not None:
|
|
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
|
# we no longer need the row-major weight
|
|
del self.state.CB
|
|
self.weight.data = self.state.CxB
|
|
return out
|
|
|
|
|
|
class Linear4bit(nn.Module):
|
|
def __init__(self, weight, bias, quant_type):
|
|
super().__init__()
|
|
self.weight = Params4bit(
|
|
weight.data,
|
|
requires_grad=False,
|
|
compress_statistics=True,
|
|
quant_type=quant_type,
|
|
)
|
|
self.compute_dtype = None
|
|
self.weight.cuda(weight.device)
|
|
self.bias = bias
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
|
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
|
if getattr(self.weight, "quant_state", None) is None:
|
|
print(
|
|
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
|
|
)
|
|
inp_dtype = x.dtype
|
|
if self.compute_dtype is not None:
|
|
x = x.to(self.compute_dtype)
|
|
|
|
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
|
|
out = bnb.matmul_4bit(
|
|
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
|
|
)
|
|
|
|
out = out.to(inp_dtype)
|
|
|
|
return out
|
|
|
|
|
|
@lru_cache(1)
|
|
def warn_deprecate_bnb():
|
|
logger.warning(
|
|
"Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
|
|
)
|
|
|
|
|
|
def get_linear(weight, bias, quantize):
|
|
if quantize is None:
|
|
linear = FastLinear(weight, bias)
|
|
elif quantize == "eetq":
|
|
if HAS_EETQ:
|
|
linear = EETQLinear(weight, bias)
|
|
else:
|
|
raise ImportError(
|
|
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
|
)
|
|
elif quantize == "fp8":
|
|
linear = Fp8Linear(weight, bias)
|
|
elif quantize == "bitsandbytes":
|
|
warn_deprecate_bnb()
|
|
linear = Linear8bitLt(
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=False,
|
|
threshold=6.0,
|
|
)
|
|
if bias is not None:
|
|
linear.bias = nn.Parameter(bias)
|
|
elif quantize == "bitsandbytes-fp4":
|
|
linear = Linear4bit(
|
|
weight,
|
|
bias,
|
|
quant_type="fp4",
|
|
)
|
|
elif quantize == "bitsandbytes-nf4":
|
|
linear = Linear4bit(
|
|
weight,
|
|
bias,
|
|
quant_type="nf4",
|
|
)
|
|
elif quantize == "gptq":
|
|
try:
|
|
qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
|
|
except Exception:
|
|
raise NotImplementedError(
|
|
f"The passed weight is not `gptq` compatible, loader needs to be updated."
|
|
)
|
|
|
|
if use_exllama:
|
|
linear = ExllamaQuantLinear(
|
|
qweight, qzeros, scales, g_idx, bias, bits, groupsize
|
|
)
|
|
else:
|
|
linear = QuantLinear(
|
|
qweight,
|
|
qzeros,
|
|
scales,
|
|
g_idx,
|
|
bias,
|
|
bits,
|
|
groupsize,
|
|
)
|
|
elif quantize == "awq":
|
|
try:
|
|
qweight, qzeros, scales, _, bits, groupsize, _ = weight
|
|
except Exception:
|
|
raise NotImplementedError(
|
|
f"The passed weight is not `awq` compatible, loader needs to be updated."
|
|
)
|
|
if IS_ROCM_SYSTEM:
|
|
raise NotImplementedError(
|
|
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
|
|
"to use Exllama/GPTQ kernels for AWQ inference."
|
|
)
|
|
if not HAS_AWQ:
|
|
raise NotImplementedError(
|
|
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
|
|
)
|
|
linear = WQLinear(
|
|
w_bit=bits,
|
|
group_size=groupsize,
|
|
qweight=qweight,
|
|
qzeros=qzeros,
|
|
scales=scales,
|
|
bias=bias is not None,
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
|
return linear
|
|
|
|
|
|
class SuperLayer(nn.Module):
|
|
def __init__(self, linear):
|
|
super().__init__()
|
|
self.linear = linear
|
|
|
|
def forward(self, x):
|
|
return self.linear.forward(x)
|
|
|
|
|
|
class ResBlock(torch.nn.Module):
|
|
def __init__(self, config, prefix, weights):
|
|
super().__init__()
|
|
self.linear = FastLinear.load(
|
|
config, prefix=f"{prefix}.linear", weights=weights, bias=True
|
|
)
|
|
self.act = torch.nn.SiLU()
|
|
|
|
def forward(self, x):
|
|
return x + self.act(self.linear(x))
|
|
|
|
|
|
class MedusaModel(torch.nn.Module):
|
|
def __init__(self, config, weights):
|
|
super().__init__()
|
|
self.heads = torch.nn.ModuleList(
|
|
[
|
|
MedusaHead(config, prefix=f"{i}", weights=weights)
|
|
for i in range(config["medusa_num_heads"])
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
|
|
return speculative_logits
|
|
|
|
|
|
class MedusaHead(torch.nn.Module):
|
|
def __init__(self, config, prefix, weights):
|
|
super().__init__()
|
|
self.blocks = torch.nn.ModuleList(
|
|
[
|
|
ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
|
|
for i in range(config["medusa_num_layers"])
|
|
]
|
|
)
|
|
n = len(self.blocks)
|
|
self.out = FastLinear.load(
|
|
config, prefix=f"{prefix}.{n}", weights=weights, bias=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.out(x)
|
|
return x
|
|
|
|
|
|
class SpeculativeHead(nn.Module):
|
|
def __init__(self, lm_head, medusa):
|
|
super().__init__()
|
|
self.lm_head = lm_head
|
|
self.medusa = medusa
|
|
|
|
@staticmethod
|
|
def load(config, prefix: str, weights):
|
|
lm_head = TensorParallelHead.load(config, prefix, weights)
|
|
use_medusa = config.use_medusa
|
|
if use_medusa:
|
|
from pathlib import Path
|
|
from safetensors import safe_open
|
|
import json
|
|
|
|
medusa_config = str(Path(use_medusa) / "config.json")
|
|
filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")
|
|
|
|
with open(medusa_config, "r") as f:
|
|
config = json.load(f)
|
|
routing = weights.routing
|
|
with safe_open(filename, framework="pytorch") as f:
|
|
for k in f.keys():
|
|
if k in routing:
|
|
raise RuntimeError(
|
|
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
|
|
)
|
|
weights.routing[k] = filename
|
|
|
|
medusa = MedusaModel(config, weights)
|
|
else:
|
|
medusa = None
|
|
return SpeculativeHead(lm_head, medusa)
|
|
|
|
def forward(
|
|
self, input: torch.Tensor
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
logits = self.lm_head(input)
|
|
speculative_logits = self.medusa(input) if self.medusa is not None else None
|
|
return logits, speculative_logits
|
|
|
|
|
|
class TensorParallelHead(SuperLayer):
|
|
def __init__(self, linear, process_group, should_gather: bool):
|
|
super().__init__(linear)
|
|
self.process_group = process_group
|
|
self.should_gather = should_gather
|
|
|
|
@staticmethod
|
|
def load(config, prefix: str, weights):
|
|
if weights.process_group.size() > 1:
|
|
try:
|
|
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
|
|
should_gather = True
|
|
except AssertionError:
|
|
# If the vocab size is not divisible by number of shards
|
|
# just load the entire thing.
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
should_gather = False
|
|
else:
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
should_gather = False
|
|
|
|
# GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
|
|
if config.quantize in ["gptq", "awq", "eetq"]:
|
|
quantize = None
|
|
else:
|
|
quantize = config.quantize
|
|
return TensorParallelHead(
|
|
get_linear(weight, bias=None, quantize=quantize),
|
|
process_group=weights.process_group,
|
|
should_gather=should_gather,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
if not self.should_gather:
|
|
return super().forward(input)
|
|
|
|
world_size = self.process_group.size()
|
|
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
|
out_dim = self.linear.weight.shape[0]
|
|
|
|
if input.shape[0] == 1:
|
|
world_out = input.new_empty(1, out_dim * world_size)
|
|
local_out = input.new_empty(1, out_dim)
|
|
gather_input = local_out
|
|
else:
|
|
world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
|
gather_input = input.new_empty(out_dim, input.shape[0])
|
|
local_out = gather_input.T
|
|
|
|
torch.mm(input, self.linear.weight.T, out=local_out)
|
|
|
|
torch.distributed.all_gather_into_tensor(
|
|
world_out, gather_input, group=self.process_group
|
|
)
|
|
|
|
if input.shape[0] == 1:
|
|
return world_out
|
|
return world_out.T
|
|
|
|
output = super().forward(input)
|
|
world_output = [
|
|
torch.empty_like(output) for _ in range(self.process_group.size())
|
|
]
|
|
torch.distributed.all_gather(world_output, output, group=self.process_group)
|
|
world_output = torch.cat(world_output, dim=-1)
|
|
return world_output
|
|
|
|
|
|
class TensorParallelColumnLinear(SuperLayer):
|
|
@classmethod
|
|
def load_qkv(cls, config, prefix: str, weights, bias: bool):
|
|
"""Specific method when the QKV was joined after the fact"""
|
|
weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
|
|
if bias:
|
|
raise NotImplementedError("packed_qkv only implemented for baichuan")
|
|
else:
|
|
bias = None
|
|
linear = get_linear(weight, bias, config.quantize)
|
|
return cls(linear)
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
return cls.load_multi(config, [prefix], weights, bias, dim=0)
|
|
|
|
@classmethod
|
|
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
|
|
weight = weights.get_multi_weights_col(
|
|
prefixes, quantize=config.quantize, dim=dim
|
|
)
|
|
|
|
if bias:
|
|
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
|
|
bias = torch.cat(b, dim=dim)
|
|
else:
|
|
bias = None
|
|
linear = get_linear(weight, bias, config.quantize)
|
|
return cls(linear)
|
|
|
|
|
|
class TensorParallelRowLinear(SuperLayer):
|
|
def __init__(self, linear, process_group):
|
|
super().__init__(linear)
|
|
self.process_group = process_group
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
|
|
|
if bias and weights.process_group.rank() == 0:
|
|
# Rank is only on the first rank process
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(
|
|
get_linear(weight, bias, config.quantize),
|
|
process_group=weights.process_group,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
|
|
out = super().forward(input)
|
|
if self.process_group.size() > 1 and reduce:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
class TensorParallelEmbedding(nn.Module):
|
|
def __init__(self, prefix: str, weights, reduce=True):
|
|
super().__init__()
|
|
weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
|
|
num_embeddings = weights.get_shape(f"{prefix}.weight")[0]
|
|
|
|
process_group = weights.process_group
|
|
|
|
world_size = process_group.size()
|
|
rank = process_group.rank()
|
|
|
|
block_size = (num_embeddings + world_size - 1) // world_size
|
|
self.min_id = rank * block_size
|
|
self.max_id = min(num_embeddings, (rank + 1) * block_size)
|
|
self.null_idx = weight.shape[
|
|
0
|
|
] # Usually block_size, might be less in non even vocab_size.
|
|
self.process_group = weights.process_group
|
|
self.reduce = reduce
|
|
|
|
"""Additional 0 entry used for masking"""
|
|
self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
|
# translate for [0, self.max_id - self.min_id[
|
|
input = torch.where(
|
|
(self.min_id > input) | (input >= self.max_id),
|
|
self.null_idx,
|
|
input - self.min_id,
|
|
)
|
|
out = torch.nn.functional.embedding(input, self.weight)
|
|
if self.reduce and self.process_group.size() > 1:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
try:
|
|
if IS_CUDA_SYSTEM:
|
|
import dropout_layer_norm
|
|
elif IS_ROCM_SYSTEM:
|
|
from vllm import layernorm_ops
|
|
else:
|
|
dropout_layer_norm = None
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super(FastLayerNorm, self).forward(hidden_states), residual
|
|
else:
|
|
(
|
|
normed_hidden_states,
|
|
residual,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
self.bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.eps,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
False,
|
|
)
|
|
if residual is None:
|
|
residual = hidden_states
|
|
|
|
return normed_hidden_states, residual
|
|
|
|
class FastRMSNorm(nn.Module):
|
|
def __init__(self, weight: torch.Tensor, eps: float):
|
|
super().__init__()
|
|
|
|
self.weight = nn.Parameter(weight)
|
|
self.variance_epsilon = eps
|
|
|
|
@classmethod
|
|
def load(cls, prefix, weights, eps=1e-6):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
return cls(weight, eps)
|
|
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 8192:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(
|
|
variance + self.variance_epsilon
|
|
)
|
|
|
|
# convert into half-precision if necessary
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
hidden_states = hidden_states.to(self.weight.dtype)
|
|
|
|
return self.weight * hidden_states, residual
|
|
elif IS_CUDA_SYSTEM:
|
|
# faster post attention rms norm
|
|
(
|
|
normed_hidden_states,
|
|
res,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.variance_epsilon,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
True, # Activate RMSNorm
|
|
)
|
|
if res is None:
|
|
res = hidden_states
|
|
|
|
return normed_hidden_states, res
|
|
elif IS_ROCM_SYSTEM:
|
|
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
out = torch.empty_like(hidden_states)
|
|
layernorm_ops.rms_norm(
|
|
out,
|
|
hidden_states,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
return out, residual
|
|
else:
|
|
raise ValueError(
|
|
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
|
|
)
|
|
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
if IS_CUDA_SYSTEM:
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
import rotary_emb
|
|
elif IS_ROCM_SYSTEM:
|
|
from vllm import pos_encoding_ops
|
|
|
|
def _create_inv_freq(dim, base, device):
|
|
inv_freq = 1.0 / (
|
|
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
|
)
|
|
return inv_freq
|
|
|
|
def _get_rope_config(config):
|
|
if os.getenv("ROPE_SCALING", None) is not None:
|
|
rope_scaling = {
|
|
"type": os.environ["ROPE_SCALING"],
|
|
"factor": float(os.environ["ROPE_FACTOR"]),
|
|
}
|
|
return rope_scaling
|
|
return getattr(config, "rope_scaling", None)
|
|
|
|
class PositionRotaryEmbedding(nn.Module):
|
|
def __init__(self, inv_freq, scaling_factor):
|
|
super().__init__()
|
|
self.inv_freq = inv_freq
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
self.scaling_factor = scaling_factor
|
|
self.dynamic_args = None
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
):
|
|
# Such controlflows may add some overhead.
|
|
if IS_CUDA_SYSTEM:
|
|
rotary_dim = cos.shape[-1]
|
|
q1 = query[..., :rotary_dim]
|
|
q2 = query[..., rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
|
|
|
k1 = key[..., :rotary_dim]
|
|
k2 = key[..., rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
|
elif IS_ROCM_SYSTEM:
|
|
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
|
|
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
|
|
|
|
head_size = query.shape[-1]
|
|
|
|
# Inplace operation, updating query and key.
|
|
pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
|
|
else:
|
|
raise ValueError(
|
|
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
|
|
)
|
|
|
|
@classmethod
|
|
def static(cls, config, dim, base, device):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
scaling_factor = None
|
|
rope_scaling = _get_rope_config(config)
|
|
if rope_scaling is not None:
|
|
scaling_factor = rope_scaling["factor"]
|
|
if rope_scaling["type"] == "linear":
|
|
pass
|
|
elif rope_scaling["type"] == "dynamic":
|
|
return DynamicPositionRotaryEmbedding(
|
|
dim=dim,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
base=base,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
)
|
|
elif rope_scaling["type"] == "yarn":
|
|
return YarnPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=rope_scaling[
|
|
"original_max_position_embeddings"
|
|
],
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
extrapolation_factor=1,
|
|
attn_factor=1,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
|
|
)
|
|
return cls(inv_freq, scaling_factor)
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix, weights):
|
|
# XXX: Always load this in float32 !
|
|
dtype = weights.dtype
|
|
weights.dtype = torch.float32
|
|
inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
|
|
weights.dtype = dtype
|
|
|
|
scaling_factor = None
|
|
rope_scaling = _get_rope_config(config)
|
|
if rope_scaling is not None:
|
|
scaling_factor = rope_scaling["factor"]
|
|
if rope_scaling["type"] == "linear":
|
|
pass
|
|
elif rope_scaling["type"] == "dynamic":
|
|
return DynamicPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
)
|
|
elif rope_scaling["type"] == "yarn":
|
|
return YarnPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=rope_scaling[
|
|
"original_max_position_embeddings"
|
|
],
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
extrapolation_factor=1,
|
|
attn_factor=1,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
|
|
)
|
|
return cls(inv_freq, scaling_factor)
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
if self.scaling_factor is not None:
|
|
t /= self.scaling_factor
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
def get_cos_sin(
|
|
self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
|
|
):
|
|
"""
|
|
Return cos and sin for the asked position ids
|
|
"""
|
|
if IS_ROCM_SYSTEM:
|
|
# For RoCm, we always use float cos/sin to avoid a cast.
|
|
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
|
|
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
|
|
dtype = torch.float32
|
|
|
|
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
|
|
|
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
|
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
|
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
|
|
return cos.unsqueeze(1), sin.unsqueeze(1)
|
|
|
|
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
super().__init__(inv_freq, scaling_factor)
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
if seqlen > self.max_position_embeddings:
|
|
newbase = self.base * (
|
|
(self.scaling_factor * seqlen / self.max_position_embeddings)
|
|
- (self.scaling_factor - 1)
|
|
) ** (self.dim / (self.dim - 2))
|
|
self.inv_freq = _create_inv_freq(
|
|
self.dim, newbase, self.inv_freq.device
|
|
)
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
# Inverse dim formula to find dim based on number of rotations
|
|
import math
|
|
|
|
def find_correction_dim(
|
|
num_rotations, dim, base=10000, max_position_embeddings=2048
|
|
):
|
|
return (
|
|
dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
|
|
) / (2 * math.log(base))
|
|
|
|
# Find dim range bounds based on rotations
|
|
def find_correction_range(
|
|
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
|
):
|
|
low = math.floor(
|
|
find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
|
)
|
|
high = math.ceil(
|
|
find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
|
)
|
|
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
|
|
|
def linear_ramp_mask(min, max, dim):
|
|
if min == max:
|
|
max += 0.001 # Prevent singularity
|
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
|
ramp_func = torch.clamp(linear_func, 0, 1)
|
|
return ramp_func
|
|
|
|
def get_mscale(scale=1):
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * math.log(scale) + 1.0
|
|
|
|
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
max_position_embeddings,
|
|
base,
|
|
device,
|
|
scaling_factor,
|
|
*,
|
|
extrapolation_factor,
|
|
attn_factor,
|
|
beta_fast,
|
|
beta_slow,
|
|
):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
super().__init__(inv_freq, scaling_factor)
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.extrapolation_factor = extrapolation_factor
|
|
self.attn_factor = attn_factor
|
|
self.beta_fast = beta_fast
|
|
self.beta_slow = beta_slow
|
|
self.mscale = float(
|
|
get_mscale(self.scaling_factor) * self.attn_factor
|
|
) # Get n-d magnitude scaling corrected for interpolation
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
if seqlen > self.max_position_embeddings:
|
|
inv_freq_extrapolation = _create_inv_freq(
|
|
self.dim, self.base, self.inv_freq.device
|
|
)
|
|
freqs = 1.0 / inv_freq_extrapolation
|
|
inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
|
|
low, high = find_correction_range(
|
|
self.beta_fast,
|
|
self.beta_slow,
|
|
self.dim,
|
|
self.base,
|
|
self.max_position_embeddings,
|
|
)
|
|
inv_freq_mask = (
|
|
1
|
|
- linear_ramp_mask(low, high, self.dim // 2).float().to(device)
|
|
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
|
inv_freq = (
|
|
inv_freq_interpolation * (1 - inv_freq_mask)
|
|
+ inv_freq_extrapolation * inv_freq_mask
|
|
)
|
|
|
|
self.inv_freq = inv_freq
|
|
self.mscale = float(
|
|
get_mscale(self.scaling_factor) * self.attn_factor
|
|
) # Get n-d magnitude scaling corrected for interpolation
|
|
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
|
|
self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)
|
|
|
|
except ImportError:
|
|
pass
|