mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-05-02 23:42:06 +00:00
* wip
wip
refacto
refacto
Initial setup for CXX binding to TRTLLM
Working FFI call for TGI and TRTLLM backend
Remove unused parameters annd force tokenizer name to be set
Overall build TRTLLM and deps through CMake build system
Enable end to end CMake build
First version loading engines and making it ready for inference
Remembering to check how we can detect support for chunked context
Move to latest TensorRT-LLM version
Specify which default log level to use depending on CMake build type
make leader executor mode working
unconditionally call InitializeBackend on the FFI layer
bind to CUDA::nvml to retrieve compute capabilities at runtime
updated logic and comment to detect cuda compute capabilities
implement the Stream method to send new tokens through a callback
use spdlog release 1.14.1 moving forward
update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c
correctly tell cmake to build dependent tensorrt-llm required libraries
create cmake install target to put everything relevant in installation folder
add auth_token CLI argument to provide hf hub authentification token
allow converting huggingface::tokenizers error to TensorRtLlmBackendError
use correct include for spdlog
include guard to build example in cmakelists
working setup of the ffi layer
remove fmt import
use external fmt lib
end to end ffi flow working
make sure to track include/ffi.h to trigger rebuild from cargo
impl the rust backend which currently cannot move the actual computation in background thread
expose shutdown function at ffi layer
impl RwLock scenario for TensorRtLllmBackend
oops missing c++ backend definitions
compute the number of maximum new tokens for each request independently
make sure the context is not dropped in the middle of the async decoding.
remove unnecessary log
add all the necessary plumbery to return the generated content
update invalid doc in cpp file
correctly forward back the log probabilities
remove unneeded scope variable for now
refactor Stream impl for Generation to factorise code
expose the internal missing start/queue timestamp
forward tgi parameters rep/freq penalty
add some more validation about grammar not supported
define a shared struct to hold the result of a decoding step
expose information about potential error happening while decoding
remove logging
add logging in case of decoding error
make sure executor_worker is provided
add initial Dockerfile for TRTLLM backend
add some more information in CMakeLists.txt to correctly install executorWorker
add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper
simplify prebuilt trtllm libraries name definition
do the same name definition stuff for tensorrt_llm_executor_static
leverage pkg-config to probe libraries paths and reuse new install structure from cmake
fix bad copy/past missing nvinfer linkage direction
align all the linker search dependency
add missing pkgconfig folder for MPI in Dockerfile
correctly setup linking search path for runtime layer
fix missing / before tgi lib path
adding missing ld_library_path for cuda stubs in Dockerfile
update tgi entrypoint
commenting out Python part for TensorRT installation
refactored docker image
move to TensorRT-LLM v0.11.0
make docker linter happy with same capitalization rule
fix typo
refactor the compute capabilities detection along with num gpus
update TensorRT-LLM to latest version
update TensorRT install script to latest
update build.rs to link to cuda 12.5
add missing dependant libraries for linking
clean up a bit
install to decoder_attention target
add some custom stuff for nccl linkage
fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time
use std::env::const::ARCH
make sure variable live long enough...
look for cuda 12.5
add some more basic info in README.md
* Rebase.
* Fix autodocs.
* Let's try to enable trtllm backend.
* Ignore backends/v3 by default.
* Fixing client.
* Fix makefile + autodocs.
* Updating the schema thing + redocly.
* Fix trtllm lint.
* Adding pb files ?
* Remove cargo fmt temporarily.
* ?
* Tmp.
* Remove both check + clippy ?
* Backporting telemetry.
* Backporting 457fb0a1
* Remove PB from git.
* Fixing PB with default member backends/client
* update TensorRT-LLM to latest version
* provided None for api_key
* link against libtensorrt_llm and not libtensorrt-llm
---------
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2084 lines
56 KiB
JSON
2084 lines
56 KiB
JSON
{
|
|
"openapi": "3.0.3",
|
|
"info": {
|
|
"title": "Text Generation Inference",
|
|
"description": "Text Generation Webserver",
|
|
"contact": {
|
|
"name": "Olivier Dehaene"
|
|
},
|
|
"license": {
|
|
"name": "Apache 2.0",
|
|
"url": "https://www.apache.org/licenses/LICENSE-2.0"
|
|
},
|
|
"version": "2.2.1-dev0"
|
|
},
|
|
"paths": {
|
|
"/": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Generate tokens if `stream == false` or a stream of token if `stream == true`",
|
|
"operationId": "compat_generate",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/CompatGenerateRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Generated Text",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/GenerateResponse"
|
|
}
|
|
},
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/StreamResponse"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"422": {
|
|
"description": "Input validation error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Input validation error"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"424": {
|
|
"description": "Generation Error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Request failed during generation"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"429": {
|
|
"description": "Model is overloaded",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Model is overloaded"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"500": {
|
|
"description": "Incomplete generation",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Incomplete generation"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/generate": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Generate tokens",
|
|
"operationId": "generate",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/GenerateRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Generated Text",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/GenerateResponse"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"422": {
|
|
"description": "Input validation error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Input validation error"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"424": {
|
|
"description": "Generation Error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Request failed during generation"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"429": {
|
|
"description": "Model is overloaded",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Model is overloaded"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"500": {
|
|
"description": "Incomplete generation",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Incomplete generation"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/generate_stream": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Generate a stream of token using Server-Sent Events",
|
|
"operationId": "generate_stream",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/GenerateRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Generated Text",
|
|
"content": {
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/StreamResponse"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"422": {
|
|
"description": "Input validation error",
|
|
"content": {
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Input validation error"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"424": {
|
|
"description": "Generation Error",
|
|
"content": {
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Request failed during generation"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"429": {
|
|
"description": "Model is overloaded",
|
|
"content": {
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Model is overloaded"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"500": {
|
|
"description": "Incomplete generation",
|
|
"content": {
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Incomplete generation"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/health": {
|
|
"get": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Health check method",
|
|
"operationId": "health",
|
|
"responses": {
|
|
"200": {
|
|
"description": "Everything is working fine"
|
|
},
|
|
"503": {
|
|
"description": "Text generation inference is down",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "unhealthy",
|
|
"error_type": "healthcheck"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/info": {
|
|
"get": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Text Generation Inference endpoint info",
|
|
"operationId": "get_model_info",
|
|
"responses": {
|
|
"200": {
|
|
"description": "Served model info",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/Info"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/metrics": {
|
|
"get": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Prometheus metrics scrape endpoint",
|
|
"operationId": "metrics",
|
|
"responses": {
|
|
"200": {
|
|
"description": "Prometheus Metrics",
|
|
"content": {
|
|
"text/plain": {
|
|
"schema": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/tokenize": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Tokenize inputs",
|
|
"operationId": "tokenize",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/GenerateRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Tokenized ids",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/TokenizeResponse"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"404": {
|
|
"description": "No tokenizer found",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "No fast tokenizer available"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/v1/chat/completions": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Generate tokens",
|
|
"operationId": "chat_completions",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ChatRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Generated Chat Completion",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ChatCompletion"
|
|
}
|
|
},
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ChatCompletionChunk"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"422": {
|
|
"description": "Input validation error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Input validation error"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"424": {
|
|
"description": "Generation Error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Request failed during generation"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"429": {
|
|
"description": "Model is overloaded",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Model is overloaded"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"500": {
|
|
"description": "Incomplete generation",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Incomplete generation"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"/v1/completions": {
|
|
"post": {
|
|
"tags": [
|
|
"Text Generation Inference"
|
|
],
|
|
"summary": "Generate tokens",
|
|
"operationId": "completions",
|
|
"requestBody": {
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/CompletionRequest"
|
|
}
|
|
}
|
|
},
|
|
"required": true
|
|
},
|
|
"responses": {
|
|
"200": {
|
|
"description": "Generated Chat Completion",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/CompletionFinal"
|
|
}
|
|
},
|
|
"text/event-stream": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/Chunk"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"422": {
|
|
"description": "Input validation error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Input validation error"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"424": {
|
|
"description": "Generation Error",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Request failed during generation"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"429": {
|
|
"description": "Model is overloaded",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Model is overloaded"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"500": {
|
|
"description": "Incomplete generation",
|
|
"content": {
|
|
"application/json": {
|
|
"schema": {
|
|
"$ref": "#/components/schemas/ErrorResponse"
|
|
},
|
|
"example": {
|
|
"error": "Incomplete generation"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"components": {
|
|
"schemas": {
|
|
"BestOfSequence": {
|
|
"type": "object",
|
|
"required": [
|
|
"generated_text",
|
|
"finish_reason",
|
|
"generated_tokens",
|
|
"prefill",
|
|
"tokens"
|
|
],
|
|
"properties": {
|
|
"finish_reason": {
|
|
"$ref": "#/components/schemas/FinishReason"
|
|
},
|
|
"generated_text": {
|
|
"type": "string",
|
|
"example": "test"
|
|
},
|
|
"generated_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 1,
|
|
"minimum": 0
|
|
},
|
|
"prefill": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/PrefillToken"
|
|
}
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": 42,
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"tokens": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Token"
|
|
}
|
|
},
|
|
"top_tokens": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Token"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletion": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"created",
|
|
"model",
|
|
"system_fingerprint",
|
|
"choices",
|
|
"usage"
|
|
],
|
|
"properties": {
|
|
"choices": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/ChatCompletionComplete"
|
|
}
|
|
},
|
|
"created": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": "1706270835",
|
|
"minimum": 0
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"example": "mistralai/Mistral-7B-Instruct-v0.2"
|
|
},
|
|
"system_fingerprint": {
|
|
"type": "string"
|
|
},
|
|
"usage": {
|
|
"$ref": "#/components/schemas/Usage"
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionChoice": {
|
|
"type": "object",
|
|
"required": [
|
|
"index",
|
|
"delta"
|
|
],
|
|
"properties": {
|
|
"delta": {
|
|
"$ref": "#/components/schemas/ChatCompletionDelta"
|
|
},
|
|
"finish_reason": {
|
|
"type": "string",
|
|
"nullable": true
|
|
},
|
|
"index": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"logprobs": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/ChatCompletionLogprobs"
|
|
}
|
|
],
|
|
"nullable": true
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionChunk": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"created",
|
|
"model",
|
|
"system_fingerprint",
|
|
"choices"
|
|
],
|
|
"properties": {
|
|
"choices": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/ChatCompletionChoice"
|
|
}
|
|
},
|
|
"created": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": "1706270978",
|
|
"minimum": 0
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"example": "mistralai/Mistral-7B-Instruct-v0.2"
|
|
},
|
|
"system_fingerprint": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionComplete": {
|
|
"type": "object",
|
|
"required": [
|
|
"index",
|
|
"message",
|
|
"finish_reason"
|
|
],
|
|
"properties": {
|
|
"finish_reason": {
|
|
"type": "string"
|
|
},
|
|
"index": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"logprobs": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/ChatCompletionLogprobs"
|
|
}
|
|
],
|
|
"nullable": true
|
|
},
|
|
"message": {
|
|
"$ref": "#/components/schemas/OutputMessage"
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionDelta": {
|
|
"oneOf": [
|
|
{
|
|
"$ref": "#/components/schemas/TextMessage"
|
|
},
|
|
{
|
|
"$ref": "#/components/schemas/ToolCallDelta"
|
|
}
|
|
]
|
|
},
|
|
"ChatCompletionLogprob": {
|
|
"type": "object",
|
|
"required": [
|
|
"token",
|
|
"logprob",
|
|
"top_logprobs"
|
|
],
|
|
"properties": {
|
|
"logprob": {
|
|
"type": "number",
|
|
"format": "float"
|
|
},
|
|
"token": {
|
|
"type": "string"
|
|
},
|
|
"top_logprobs": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/ChatCompletionTopLogprob"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionLogprobs": {
|
|
"type": "object",
|
|
"required": [
|
|
"content"
|
|
],
|
|
"properties": {
|
|
"content": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/ChatCompletionLogprob"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"ChatCompletionTopLogprob": {
|
|
"type": "object",
|
|
"required": [
|
|
"token",
|
|
"logprob"
|
|
],
|
|
"properties": {
|
|
"logprob": {
|
|
"type": "number",
|
|
"format": "float"
|
|
},
|
|
"token": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"ChatRequest": {
|
|
"type": "object",
|
|
"required": [
|
|
"messages"
|
|
],
|
|
"properties": {
|
|
"frequency_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.",
|
|
"example": "1.0",
|
|
"nullable": true
|
|
},
|
|
"logit_bias": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "number",
|
|
"format": "float"
|
|
},
|
|
"description": "UNUSED\nModify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens\n(specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,\nthe bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,\nbut values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should\nresult in a ban or exclusive selection of the relevant token.",
|
|
"nullable": true
|
|
},
|
|
"logprobs": {
|
|
"type": "boolean",
|
|
"description": "Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each\noutput token returned in the content of message.",
|
|
"example": "false",
|
|
"nullable": true
|
|
},
|
|
"max_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "The maximum number of tokens that can be generated in the chat completion.",
|
|
"example": "32",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"messages": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Message"
|
|
},
|
|
"description": "A list of messages comprising the conversation so far.",
|
|
"example": "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]"
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"description": "[UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.",
|
|
"example": "mistralai/Mistral-7B-Instruct-v0.2",
|
|
"nullable": true
|
|
},
|
|
"n": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "UNUSED\nHow many chat completion choices to generate for each input message. Note that you will be charged based on the\nnumber of generated tokens across all of the choices. Keep n as 1 to minimize costs.",
|
|
"example": "2",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"presence_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,\nincreasing the model's likelihood to talk about new topics",
|
|
"example": 0.1,
|
|
"nullable": true
|
|
},
|
|
"response_format": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/GrammarType"
|
|
}
|
|
],
|
|
"default": "null",
|
|
"nullable": true
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": 42,
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"stop": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "string"
|
|
},
|
|
"description": "Up to 4 sequences where the API will stop generating further tokens.",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"stream": {
|
|
"type": "boolean"
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while\nlower values like 0.2 will make it more focused and deterministic.\n\nWe generally recommend altering this or `top_p` but not both.",
|
|
"example": 1.0,
|
|
"nullable": true
|
|
},
|
|
"tool_choice": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/ToolChoice"
|
|
}
|
|
],
|
|
"nullable": true
|
|
},
|
|
"tool_prompt": {
|
|
"type": "string",
|
|
"description": "A prompt to be appended before the tools",
|
|
"example": "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\"",
|
|
"nullable": true
|
|
},
|
|
"tools": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Tool"
|
|
},
|
|
"description": "A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of\nfunctions the model may generate JSON inputs for.",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"top_logprobs": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with\nan associated log probability. logprobs must be set to true if this parameter is used.",
|
|
"example": "5",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"top_p": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.",
|
|
"example": 0.95,
|
|
"nullable": true
|
|
}
|
|
}
|
|
},
|
|
"Chunk": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"created",
|
|
"choices",
|
|
"model",
|
|
"system_fingerprint"
|
|
],
|
|
"properties": {
|
|
"choices": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/CompletionComplete"
|
|
}
|
|
},
|
|
"created": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"minimum": 0
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"model": {
|
|
"type": "string"
|
|
},
|
|
"system_fingerprint": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"CompatGenerateRequest": {
|
|
"type": "object",
|
|
"required": [
|
|
"inputs"
|
|
],
|
|
"properties": {
|
|
"inputs": {
|
|
"type": "string",
|
|
"example": "My name is Olivier and I"
|
|
},
|
|
"parameters": {
|
|
"$ref": "#/components/schemas/GenerateParameters"
|
|
},
|
|
"stream": {
|
|
"type": "boolean",
|
|
"default": "false"
|
|
}
|
|
}
|
|
},
|
|
"Completion": {
|
|
"oneOf": [
|
|
{
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/Chunk"
|
|
},
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"object"
|
|
],
|
|
"properties": {
|
|
"object": {
|
|
"type": "string",
|
|
"enum": [
|
|
"text_completion"
|
|
]
|
|
}
|
|
}
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/CompletionFinal"
|
|
},
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"object"
|
|
],
|
|
"properties": {
|
|
"object": {
|
|
"type": "string",
|
|
"enum": [
|
|
"text_completion"
|
|
]
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
],
|
|
"discriminator": {
|
|
"propertyName": "object"
|
|
}
|
|
},
|
|
"CompletionComplete": {
|
|
"type": "object",
|
|
"required": [
|
|
"index",
|
|
"text",
|
|
"finish_reason"
|
|
],
|
|
"properties": {
|
|
"finish_reason": {
|
|
"type": "string"
|
|
},
|
|
"index": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"logprobs": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "number",
|
|
"format": "float"
|
|
},
|
|
"nullable": true
|
|
},
|
|
"text": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"CompletionFinal": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"created",
|
|
"model",
|
|
"system_fingerprint",
|
|
"choices",
|
|
"usage"
|
|
],
|
|
"properties": {
|
|
"choices": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/CompletionComplete"
|
|
}
|
|
},
|
|
"created": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": "1706270835",
|
|
"minimum": 0
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"example": "mistralai/Mistral-7B-Instruct-v0.2"
|
|
},
|
|
"system_fingerprint": {
|
|
"type": "string"
|
|
},
|
|
"usage": {
|
|
"$ref": "#/components/schemas/Usage"
|
|
}
|
|
}
|
|
},
|
|
"CompletionRequest": {
|
|
"type": "object",
|
|
"required": [
|
|
"prompt"
|
|
],
|
|
"properties": {
|
|
"frequency_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.",
|
|
"example": "1.0",
|
|
"nullable": true
|
|
},
|
|
"max_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "The maximum number of tokens that can be generated in the chat completion.",
|
|
"default": "32",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"description": "UNUSED\nID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.",
|
|
"example": "mistralai/Mistral-7B-Instruct-v0.2",
|
|
"nullable": true
|
|
},
|
|
"prompt": {
|
|
"$ref": "#/components/schemas/Prompt"
|
|
},
|
|
"repetition_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"nullable": true
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": 42,
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"stop": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "string"
|
|
},
|
|
"description": "Up to 4 sequences where the API will stop generating further tokens.",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"stream": {
|
|
"type": "boolean"
|
|
},
|
|
"suffix": {
|
|
"type": "string",
|
|
"description": "The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.\nplease see the completion_template field in the model's tokenizer_config.json file for completion template.",
|
|
"nullable": true
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while\nlower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.",
|
|
"example": 1.0,
|
|
"nullable": true
|
|
},
|
|
"top_p": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.",
|
|
"example": 0.95,
|
|
"nullable": true
|
|
}
|
|
}
|
|
},
|
|
"DeltaToolCall": {
|
|
"type": "object",
|
|
"required": [
|
|
"index",
|
|
"id",
|
|
"type",
|
|
"function"
|
|
],
|
|
"properties": {
|
|
"function": {
|
|
"$ref": "#/components/schemas/Function"
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"index": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"type": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"Details": {
|
|
"type": "object",
|
|
"required": [
|
|
"finish_reason",
|
|
"generated_tokens",
|
|
"prefill",
|
|
"tokens"
|
|
],
|
|
"properties": {
|
|
"best_of_sequences": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/BestOfSequence"
|
|
},
|
|
"nullable": true
|
|
},
|
|
"finish_reason": {
|
|
"$ref": "#/components/schemas/FinishReason"
|
|
},
|
|
"generated_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 1,
|
|
"minimum": 0
|
|
},
|
|
"prefill": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/PrefillToken"
|
|
}
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": 42,
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"tokens": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Token"
|
|
}
|
|
},
|
|
"top_tokens": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Token"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"ErrorResponse": {
|
|
"type": "object",
|
|
"required": [
|
|
"error",
|
|
"error_type"
|
|
],
|
|
"properties": {
|
|
"error": {
|
|
"type": "string"
|
|
},
|
|
"error_type": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"FinishReason": {
|
|
"type": "string",
|
|
"enum": [
|
|
"length",
|
|
"eos_token",
|
|
"stop_sequence"
|
|
],
|
|
"example": "Length"
|
|
},
|
|
"Function": {
|
|
"type": "object",
|
|
"required": [
|
|
"arguments"
|
|
],
|
|
"properties": {
|
|
"arguments": {
|
|
"type": "string"
|
|
},
|
|
"name": {
|
|
"type": "string",
|
|
"nullable": true
|
|
}
|
|
}
|
|
},
|
|
"FunctionDefinition": {
|
|
"type": "object",
|
|
"required": [
|
|
"name",
|
|
"arguments"
|
|
],
|
|
"properties": {
|
|
"arguments": {},
|
|
"description": {
|
|
"type": "string",
|
|
"nullable": true
|
|
},
|
|
"name": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"FunctionName": {
|
|
"type": "object",
|
|
"required": [
|
|
"name"
|
|
],
|
|
"properties": {
|
|
"name": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"GenerateParameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"adapter_id": {
|
|
"type": "string",
|
|
"description": "Lora adapter id",
|
|
"default": "null",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"best_of": {
|
|
"type": "integer",
|
|
"description": "Generate best_of sequences and return the one if the highest token logprobs.",
|
|
"default": "null",
|
|
"example": 1,
|
|
"nullable": true,
|
|
"minimum": 0,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"decoder_input_details": {
|
|
"type": "boolean",
|
|
"description": "Whether to return decoder input token logprobs and ids.",
|
|
"default": "false"
|
|
},
|
|
"details": {
|
|
"type": "boolean",
|
|
"description": "Whether to return generation details.",
|
|
"default": "true"
|
|
},
|
|
"do_sample": {
|
|
"type": "boolean",
|
|
"description": "Activate logits sampling.",
|
|
"default": "false",
|
|
"example": true
|
|
},
|
|
"frequency_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "The parameter for frequency penalty. 1.0 means no penalty\nPenalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.",
|
|
"default": "null",
|
|
"example": 0.1,
|
|
"nullable": true,
|
|
"exclusiveMinimum": -2
|
|
},
|
|
"grammar": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/GrammarType"
|
|
}
|
|
],
|
|
"default": "null",
|
|
"nullable": true
|
|
},
|
|
"max_new_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "Maximum number of tokens to generate.",
|
|
"default": "100",
|
|
"example": "20",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"repetition_penalty": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "The parameter for repetition penalty. 1.0 means no penalty.\nSee [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.",
|
|
"default": "null",
|
|
"example": 1.03,
|
|
"nullable": true,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"return_full_text": {
|
|
"type": "boolean",
|
|
"description": "Whether to prepend the prompt to the generated text",
|
|
"default": "null",
|
|
"example": false,
|
|
"nullable": true
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"description": "Random sampling seed.",
|
|
"default": "null",
|
|
"example": "null",
|
|
"nullable": true,
|
|
"minimum": 0,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"stop": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "string"
|
|
},
|
|
"description": "Stop generating tokens if a member of `stop` is generated.",
|
|
"example": [
|
|
"photographer"
|
|
],
|
|
"maxItems": 4
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "The value used to module the logits distribution.",
|
|
"default": "null",
|
|
"example": 0.5,
|
|
"nullable": true,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"top_k": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "The number of highest probability vocabulary tokens to keep for top-k-filtering.",
|
|
"default": "null",
|
|
"example": 10,
|
|
"nullable": true,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"top_n_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"description": "The number of highest probability vocabulary tokens to keep for top-n-filtering.",
|
|
"default": "null",
|
|
"example": 5,
|
|
"nullable": true,
|
|
"minimum": 0,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"top_p": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "Top-p value for nucleus sampling.",
|
|
"default": "null",
|
|
"example": 0.95,
|
|
"nullable": true,
|
|
"maximum": 1,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"truncate": {
|
|
"type": "integer",
|
|
"description": "Truncate inputs tokens to the given size.",
|
|
"default": "null",
|
|
"example": "null",
|
|
"nullable": true,
|
|
"minimum": 0
|
|
},
|
|
"typical_p": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"description": "Typical Decoding mass\nSee [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.",
|
|
"default": "null",
|
|
"example": 0.95,
|
|
"nullable": true,
|
|
"maximum": 1,
|
|
"exclusiveMinimum": 0
|
|
},
|
|
"watermark": {
|
|
"type": "boolean",
|
|
"description": "Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).",
|
|
"default": "false",
|
|
"example": true
|
|
}
|
|
}
|
|
},
|
|
"GenerateRequest": {
|
|
"type": "object",
|
|
"required": [
|
|
"inputs"
|
|
],
|
|
"properties": {
|
|
"inputs": {
|
|
"type": "string",
|
|
"example": "My name is Olivier and I"
|
|
},
|
|
"parameters": {
|
|
"$ref": "#/components/schemas/GenerateParameters"
|
|
}
|
|
}
|
|
},
|
|
"GenerateResponse": {
|
|
"type": "object",
|
|
"required": [
|
|
"generated_text"
|
|
],
|
|
"properties": {
|
|
"details": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/Details"
|
|
}
|
|
],
|
|
"nullable": true
|
|
},
|
|
"generated_text": {
|
|
"type": "string",
|
|
"example": "test"
|
|
}
|
|
}
|
|
},
|
|
"GrammarType": {
|
|
"oneOf": [
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"type",
|
|
"value"
|
|
],
|
|
"properties": {
|
|
"type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"json"
|
|
]
|
|
},
|
|
"value": {
|
|
"description": "A string that represents a [JSON Schema](https://json-schema.org/).\n\nJSON Schema is a declarative language that allows to annotate JSON documents\nwith types and descriptions."
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"type",
|
|
"value"
|
|
],
|
|
"properties": {
|
|
"type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"regex"
|
|
]
|
|
},
|
|
"value": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"discriminator": {
|
|
"propertyName": "type"
|
|
}
|
|
},
|
|
"Info": {
|
|
"type": "object",
|
|
"required": [
|
|
"model_id",
|
|
"max_concurrent_requests",
|
|
"max_best_of",
|
|
"max_stop_sequences",
|
|
"max_input_tokens",
|
|
"max_total_tokens",
|
|
"validation_workers",
|
|
"max_client_batch_size",
|
|
"router",
|
|
"version"
|
|
],
|
|
"properties": {
|
|
"docker_label": {
|
|
"type": "string",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"max_best_of": {
|
|
"type": "integer",
|
|
"example": "2",
|
|
"minimum": 0
|
|
},
|
|
"max_client_batch_size": {
|
|
"type": "integer",
|
|
"example": "32",
|
|
"minimum": 0
|
|
},
|
|
"max_concurrent_requests": {
|
|
"type": "integer",
|
|
"description": "Router Parameters",
|
|
"example": "128",
|
|
"minimum": 0
|
|
},
|
|
"max_input_tokens": {
|
|
"type": "integer",
|
|
"example": "1024",
|
|
"minimum": 0
|
|
},
|
|
"max_stop_sequences": {
|
|
"type": "integer",
|
|
"example": "4",
|
|
"minimum": 0
|
|
},
|
|
"max_total_tokens": {
|
|
"type": "integer",
|
|
"example": "2048",
|
|
"minimum": 0
|
|
},
|
|
"model_id": {
|
|
"type": "string",
|
|
"description": "Model info",
|
|
"example": "bigscience/blomm-560m"
|
|
},
|
|
"model_pipeline_tag": {
|
|
"type": "string",
|
|
"example": "text-generation",
|
|
"nullable": true
|
|
},
|
|
"model_sha": {
|
|
"type": "string",
|
|
"example": "e985a63cdc139290c5f700ff1929f0b5942cced2",
|
|
"nullable": true
|
|
},
|
|
"router": {
|
|
"type": "string",
|
|
"description": "Router Info",
|
|
"example": "text-generation-router"
|
|
},
|
|
"sha": {
|
|
"type": "string",
|
|
"example": "null",
|
|
"nullable": true
|
|
},
|
|
"validation_workers": {
|
|
"type": "integer",
|
|
"example": "2",
|
|
"minimum": 0
|
|
},
|
|
"version": {
|
|
"type": "string",
|
|
"example": "0.5.0"
|
|
}
|
|
}
|
|
},
|
|
"Message": {
|
|
"type": "object",
|
|
"required": [
|
|
"role",
|
|
"content"
|
|
],
|
|
"properties": {
|
|
"content": {
|
|
"$ref": "#/components/schemas/MessageContent"
|
|
},
|
|
"name": {
|
|
"type": "string",
|
|
"example": "\"David\"",
|
|
"nullable": true
|
|
},
|
|
"role": {
|
|
"type": "string",
|
|
"example": "user"
|
|
}
|
|
}
|
|
},
|
|
"MessageChunk": {
|
|
"oneOf": [
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"text",
|
|
"type"
|
|
],
|
|
"properties": {
|
|
"text": {
|
|
"type": "string"
|
|
},
|
|
"type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"text"
|
|
]
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"image_url",
|
|
"type"
|
|
],
|
|
"properties": {
|
|
"image_url": {
|
|
"$ref": "#/components/schemas/Url"
|
|
},
|
|
"type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"image_url"
|
|
]
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"discriminator": {
|
|
"propertyName": "type"
|
|
}
|
|
},
|
|
"MessageContent": {
|
|
"oneOf": [
|
|
{
|
|
"type": "string"
|
|
},
|
|
{
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/MessageChunk"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"OutputMessage": {
|
|
"oneOf": [
|
|
{
|
|
"$ref": "#/components/schemas/TextMessage"
|
|
},
|
|
{
|
|
"$ref": "#/components/schemas/ToolCallMessage"
|
|
}
|
|
]
|
|
},
|
|
"PrefillToken": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"text",
|
|
"logprob"
|
|
],
|
|
"properties": {
|
|
"id": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 0,
|
|
"minimum": 0
|
|
},
|
|
"logprob": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"example": -0.34,
|
|
"nullable": true
|
|
},
|
|
"text": {
|
|
"type": "string",
|
|
"example": "test"
|
|
}
|
|
}
|
|
},
|
|
"Prompt": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "string"
|
|
}
|
|
},
|
|
"SimpleToken": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"text",
|
|
"start",
|
|
"stop"
|
|
],
|
|
"properties": {
|
|
"id": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 0,
|
|
"minimum": 0
|
|
},
|
|
"start": {
|
|
"type": "integer",
|
|
"example": 0,
|
|
"minimum": 0
|
|
},
|
|
"stop": {
|
|
"type": "integer",
|
|
"example": 2,
|
|
"minimum": 0
|
|
},
|
|
"text": {
|
|
"type": "string",
|
|
"example": "test"
|
|
}
|
|
}
|
|
},
|
|
"StreamDetails": {
|
|
"type": "object",
|
|
"required": [
|
|
"finish_reason",
|
|
"generated_tokens"
|
|
],
|
|
"properties": {
|
|
"finish_reason": {
|
|
"$ref": "#/components/schemas/FinishReason"
|
|
},
|
|
"generated_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 1,
|
|
"minimum": 0
|
|
},
|
|
"seed": {
|
|
"type": "integer",
|
|
"format": "int64",
|
|
"example": 42,
|
|
"nullable": true,
|
|
"minimum": 0
|
|
}
|
|
}
|
|
},
|
|
"StreamResponse": {
|
|
"type": "object",
|
|
"required": [
|
|
"index",
|
|
"token"
|
|
],
|
|
"properties": {
|
|
"details": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/StreamDetails"
|
|
}
|
|
],
|
|
"default": "null",
|
|
"nullable": true
|
|
},
|
|
"generated_text": {
|
|
"type": "string",
|
|
"default": "null",
|
|
"example": "test",
|
|
"nullable": true
|
|
},
|
|
"index": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"token": {
|
|
"$ref": "#/components/schemas/Token"
|
|
},
|
|
"top_tokens": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/Token"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"TextMessage": {
|
|
"type": "object",
|
|
"required": [
|
|
"role",
|
|
"content"
|
|
],
|
|
"properties": {
|
|
"content": {
|
|
"type": "string",
|
|
"example": "My name is David and I"
|
|
},
|
|
"role": {
|
|
"type": "string",
|
|
"example": "user"
|
|
}
|
|
}
|
|
},
|
|
"Token": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"text",
|
|
"logprob",
|
|
"special"
|
|
],
|
|
"properties": {
|
|
"id": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"example": 0,
|
|
"minimum": 0
|
|
},
|
|
"logprob": {
|
|
"type": "number",
|
|
"format": "float",
|
|
"example": -0.34,
|
|
"nullable": true
|
|
},
|
|
"special": {
|
|
"type": "boolean",
|
|
"example": "false"
|
|
},
|
|
"text": {
|
|
"type": "string",
|
|
"example": "test"
|
|
}
|
|
}
|
|
},
|
|
"TokenizeResponse": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/SimpleToken"
|
|
}
|
|
},
|
|
"Tool": {
|
|
"type": "object",
|
|
"required": [
|
|
"type",
|
|
"function"
|
|
],
|
|
"properties": {
|
|
"function": {
|
|
"$ref": "#/components/schemas/FunctionDefinition"
|
|
},
|
|
"type": {
|
|
"type": "string",
|
|
"example": "function"
|
|
}
|
|
}
|
|
},
|
|
"ToolCall": {
|
|
"type": "object",
|
|
"required": [
|
|
"id",
|
|
"type",
|
|
"function"
|
|
],
|
|
"properties": {
|
|
"function": {
|
|
"$ref": "#/components/schemas/FunctionDefinition"
|
|
},
|
|
"id": {
|
|
"type": "string"
|
|
},
|
|
"type": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"ToolCallDelta": {
|
|
"type": "object",
|
|
"required": [
|
|
"role",
|
|
"tool_calls"
|
|
],
|
|
"properties": {
|
|
"role": {
|
|
"type": "string",
|
|
"example": "assistant"
|
|
},
|
|
"tool_calls": {
|
|
"$ref": "#/components/schemas/DeltaToolCall"
|
|
}
|
|
}
|
|
},
|
|
"ToolCallMessage": {
|
|
"type": "object",
|
|
"required": [
|
|
"role",
|
|
"tool_calls"
|
|
],
|
|
"properties": {
|
|
"role": {
|
|
"type": "string",
|
|
"example": "assistant"
|
|
},
|
|
"tool_calls": {
|
|
"type": "array",
|
|
"items": {
|
|
"$ref": "#/components/schemas/ToolCall"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"ToolChoice": {
|
|
"allOf": [
|
|
{
|
|
"$ref": "#/components/schemas/ToolType"
|
|
}
|
|
],
|
|
"nullable": true
|
|
},
|
|
"ToolType": {
|
|
"oneOf": [
|
|
{
|
|
"type": "object",
|
|
"default": null,
|
|
"nullable": true
|
|
},
|
|
{
|
|
"type": "string"
|
|
},
|
|
{
|
|
"type": "object",
|
|
"required": [
|
|
"function"
|
|
],
|
|
"properties": {
|
|
"function": {
|
|
"$ref": "#/components/schemas/FunctionName"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"type": "object",
|
|
"default": null,
|
|
"nullable": true
|
|
}
|
|
]
|
|
},
|
|
"Url": {
|
|
"type": "object",
|
|
"required": [
|
|
"url"
|
|
],
|
|
"properties": {
|
|
"url": {
|
|
"type": "string"
|
|
}
|
|
}
|
|
},
|
|
"Usage": {
|
|
"type": "object",
|
|
"required": [
|
|
"prompt_tokens",
|
|
"completion_tokens",
|
|
"total_tokens"
|
|
],
|
|
"properties": {
|
|
"completion_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"prompt_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
},
|
|
"total_tokens": {
|
|
"type": "integer",
|
|
"format": "int32",
|
|
"minimum": 0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"tags": [
|
|
{
|
|
"name": "Text Generation Inference",
|
|
"description": "Hugging Face Text Generation Inference API"
|
|
}
|
|
]
|
|
}
|