text-generation-inference/router/src/lib.rs
OlivierDehaene 518d30dec4 feat(router): add max_batch_size (#1542)
Some hardware require a maximum batch size.
2024-04-24 09:21:57 +00:00

650 lines
20 KiB
Rust

mod health;
/// Text Generation Inference Webserver
mod infer;
mod queue;
pub mod server;
mod validation;
use infer::{Infer, InferError, InferStreamResponse};
use queue::{Entry, Queue};
use serde::{Deserialize, Serialize};
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
use utoipa::ToSchema;
use validation::Validation;
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
OwnedSemaphorePermit,
u32, // input_length
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);
/// Hub type
#[derive(Clone, Debug, Deserialize)]
pub struct HubModelInfo {
#[serde(rename(deserialize = "id"))]
pub model_id: String,
pub sha: Option<String>,
pub pipeline_tag: Option<String>,
}
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
pub chat_template: Option<String>,
pub bos_token: Option<String>,
pub eos_token: Option<String>,
}
impl HubTokenizerConfig {
pub fn from_file(filename: &std::path::Path) -> Self {
let content = std::fs::read_to_string(filename).unwrap();
serde_json::from_str(&content).unwrap_or_default()
}
}
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
/// Model info
#[schema(example = "bigscience/blomm-560m")]
pub model_id: String,
#[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
pub model_sha: Option<String>,
#[schema(example = "torch.float16")]
pub model_dtype: String,
#[schema(example = "cuda")]
pub model_device_type: String,
#[schema(nullable = true, example = "text-generation")]
pub model_pipeline_tag: Option<String>,
/// Router Parameters
#[schema(example = "128")]
pub max_concurrent_requests: usize,
#[schema(example = "2")]
pub max_best_of: usize,
#[schema(example = "4")]
pub max_stop_sequences: usize,
#[schema(example = "1024")]
pub max_input_length: usize,
#[schema(example = "2048")]
pub max_total_tokens: usize,
#[schema(example = "1.2")]
pub waiting_served_ratio: f32,
#[schema(example = "32000")]
pub max_batch_total_tokens: u32,
#[schema(example = "20")]
pub max_waiting_tokens: usize,
#[schema(nullable = true, example = "null")]
pub max_batch_size: Option<usize>,
#[schema(example = "2")]
pub validation_workers: usize,
/// Router Info
#[schema(example = "0.5.0")]
pub version: &'static str,
#[schema(nullable = true, example = "null")]
pub sha: Option<&'static str>,
#[schema(nullable = true, example = "null")]
pub docker_label: Option<&'static str>,
}
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateParameters {
#[serde(default)]
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
pub best_of: Option<usize>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
nullable = true,
default = "null",
example = 0.5
)]
pub temperature: Option<f32>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
nullable = true,
default = "null",
example = 1.03
)]
pub repetition_penalty: Option<f32>,
#[serde(default)]
#[schema(
exclusive_minimum = -2.0,
nullable = true,
default = "null",
example = 0.1
)]
pub frequency_penalty: Option<f32>,
#[serde(default)]
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
pub top_k: Option<i32>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
maximum = 1.0,
nullable = true,
default = "null",
example = 0.95
)]
pub top_p: Option<f32>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
maximum = 1.0,
nullable = true,
default = "null",
example = 0.95
)]
pub typical_p: Option<f32>,
#[serde(default)]
#[schema(default = "false", example = true)]
pub do_sample: bool,
#[serde(default = "default_max_new_tokens")]
#[schema(nullable = true, default = "100", example = "20")]
pub max_new_tokens: Option<u32>,
#[serde(default)]
#[schema(nullable = true, default = "null", example = false)]
pub return_full_text: Option<bool>,
#[serde(default)]
#[schema(inline, max_items = 4, example = json ! (["photographer"]))]
pub stop: Vec<String>,
#[serde(default)]
#[schema(nullable = true, default = "null", example = "null")]
pub truncate: Option<usize>,
#[serde(default)]
#[schema(default = "false", example = true)]
pub watermark: bool,
#[serde(default)]
#[schema(default = "true")]
pub details: bool,
#[serde(default)]
#[schema(default = "true")]
pub decoder_input_details: bool,
#[serde(default)]
#[schema(
exclusive_minimum = 0,
nullable = true,
default = "null",
example = "null"
)]
pub seed: Option<u64>,
#[serde(default)]
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
pub top_n_tokens: Option<u32>,
}
fn default_max_new_tokens() -> Option<u32> {
Some(100)
}
fn default_parameters() -> GenerateParameters {
GenerateParameters {
best_of: None,
temperature: None,
repetition_penalty: None,
frequency_penalty: None,
top_k: None,
top_p: None,
typical_p: None,
do_sample: true,
max_new_tokens: default_max_new_tokens(),
return_full_text: None,
stop: Vec::new(),
truncate: None,
watermark: false,
details: false,
decoder_input_details: false,
seed: None,
top_n_tokens: None,
}
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletion {
pub id: String,
pub object: String,
#[schema(example = "1706270835")]
pub created: u64,
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
pub model: String,
pub system_fingerprint: String,
pub choices: Vec<ChatCompletionComplete>,
pub usage: Usage,
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionComplete {
pub index: u32,
pub message: Message,
pub logprobs: Option<ChatCompletionLogprobs>,
pub finish_reason: String,
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
content: Vec<ChatCompletionLogprob>,
}
impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
fn from(value: (Token, Vec<Token>)) -> Self {
let (token, top_tokens) = value;
Self {
content: vec![ChatCompletionLogprob {
token: token.text,
logprob: token.logprob,
top_logprobs: top_tokens
.into_iter()
.map(|t| ChatCompletionTopLogprob {
token: t.text,
logprob: t.logprob,
})
.collect(),
}],
}
}
}
impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
let (tokens, top_tokens) = value;
Self {
content: tokens
.into_iter()
.zip(top_tokens)
.map(|(t, top_t)| ChatCompletionLogprob {
token: t.text,
logprob: t.logprob,
top_logprobs: top_t
.into_iter()
.map(|t| ChatCompletionTopLogprob {
token: t.text,
logprob: t.logprob,
})
.collect(),
})
.collect(),
}
}
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
token: String,
logprob: f32,
top_logprobs: Vec<ChatCompletionTopLogprob>,
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
token: String,
logprob: f32,
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,
pub total_tokens: u32,
}
impl ChatCompletion {
pub(crate) fn new(
model: String,
system_fingerprint: String,
output: String,
created: u64,
details: Details,
return_logprobs: bool,
) -> Self {
Self {
id: String::new(),
object: "text_completion".into(),
created,
model,
system_fingerprint,
choices: vec![ChatCompletionComplete {
index: 0,
message: Message {
role: "assistant".into(),
content: output,
},
logprobs: return_logprobs
.then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
finish_reason: details.finish_reason.to_string(),
}],
usage: Usage {
prompt_tokens: details.prefill.len() as u32,
completion_tokens: details.generated_tokens,
total_tokens: details.prefill.len() as u32 + details.generated_tokens,
},
}
}
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChunk {
pub id: String,
pub object: String,
#[schema(example = "1706270978")]
pub created: u64,
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
pub model: String,
pub system_fingerprint: String,
pub choices: Vec<ChatCompletionChoice>,
}
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChoice {
pub index: u32,
pub delta: ChatCompletionDelta,
pub logprobs: Option<ChatCompletionLogprobs>,
pub finish_reason: Option<String>,
}
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionDelta {
#[schema(example = "user")]
pub role: String,
#[schema(example = "What is Deep Learning?")]
pub content: String,
}
impl ChatCompletionChunk {
pub(crate) fn new(
model: String,
system_fingerprint: String,
delta: String,
created: u64,
index: u32,
logprobs: Option<ChatCompletionLogprobs>,
finish_reason: Option<String>,
) -> Self {
Self {
id: String::new(),
object: "text_completion".to_string(),
created,
model,
system_fingerprint,
choices: vec![ChatCompletionChoice {
index,
delta: ChatCompletionDelta {
role: "assistant".to_string(),
content: delta,
},
logprobs,
finish_reason,
}],
}
}
}
fn default_request_messages() -> Vec<Message> {
vec![Message {
role: "user".to_string(),
content: "My name is David and I".to_string(),
}]
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
/// UNUSED
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
pub model: String,
/* NOTE: UNUSED */
/// A list of messages comprising the conversation so far.
#[serde(default = "default_request_messages")]
pub messages: Vec<Message>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
#[serde(default)]
#[schema(example = "1.0")]
pub frequency_penalty: Option<f32>,
/// UNUSED
/// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
/// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
/// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
/// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
/// result in a ban or exclusive selection of the relevant token.
#[serde(default)]
pub logit_bias: Option<Vec<f32>>,
/// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
/// output token returned in the content of message.
#[serde(default)]
#[schema(example = "false")]
pub logprobs: Option<bool>,
/// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
/// an associated log probability. logprobs must be set to true if this parameter is used.
#[serde(default)]
#[schema(example = "5")]
pub top_logprobs: Option<u32>,
/// The maximum number of tokens that can be generated in the chat completion.
#[serde(default)]
#[schema(example = "32")]
pub max_tokens: Option<u32>,
/// UNUSED
/// How many chat completion choices to generate for each input message. Note that you will be charged based on the
/// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
#[serde(default)]
#[schema(nullable = true, example = "2")]
pub n: Option<u32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics
#[serde(default)]
#[schema(nullable = true, example = 0.1)]
pub presence_penalty: Option<f32>,
#[serde(default = "bool::default")]
pub stream: bool,
#[schema(nullable = true, example = 42)]
pub seed: Option<u64>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
/// lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(default)]
#[schema(nullable = true, example = 1.0)]
pub temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
/// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
#[serde(default)]
#[schema(nullable = true, example = 0.95)]
pub top_p: Option<f32>,
}
#[derive(Clone, Serialize, Deserialize)]
pub(crate) struct ChatTemplateInputs<'a> {
messages: Vec<Message>,
bos_token: Option<&'a str>,
eos_token: Option<&'a str>,
add_generation_prompt: bool,
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
#[schema(example = "user")]
pub role: String,
#[schema(example = "My name is David and I")]
pub content: String,
}
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateRequest {
#[schema(example = "My name is Olivier and I")]
pub inputs: String,
#[serde(default = "default_parameters")]
pub parameters: GenerateParameters,
}
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
#[schema(example = "My name is Olivier and I")]
pub inputs: String,
#[serde(default = "default_parameters")]
pub parameters: GenerateParameters,
#[serde(default)]
#[schema(default = "false")]
pub stream: bool,
}
impl From<CompatGenerateRequest> for GenerateRequest {
fn from(req: CompatGenerateRequest) -> Self {
Self {
inputs: req.inputs,
parameters: req.parameters,
}
}
}
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
#[schema(example = 0)]
id: u32,
#[schema(example = "test")]
text: String,
#[schema(nullable = true, example = - 0.34)]
logprob: f32,
}
#[derive(Debug, Serialize, ToSchema, Clone)]
pub struct Token {
#[schema(example = 0)]
id: u32,
#[schema(example = "test")]
text: String,
#[schema(nullable = true, example = - 0.34)]
logprob: f32,
#[schema(example = "false")]
special: bool,
}
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
#[schema(example = 0)]
id: u32,
#[schema(example = "test")]
text: String,
#[schema(example = 0)]
start: usize,
#[schema(example = 2)]
stop: usize,
}
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
#[schema(example = "Length")]
pub(crate) enum FinishReason {
#[schema(rename = "length")]
Length,
#[serde(rename = "eos_token")]
#[schema(rename = "eos_token")]
EndOfSequenceToken,
#[schema(rename = "stop_sequence")]
StopSequence,
}
impl std::fmt::Display for FinishReason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
FinishReason::Length => write!(f, "length"),
FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
FinishReason::StopSequence => write!(f, "stop_sequence"),
}
}
}
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
#[schema(example = "test")]
pub generated_text: String,
#[schema(example = "length")]
pub finish_reason: FinishReason,
#[schema(example = 1)]
pub generated_tokens: u32,
#[schema(nullable = true, example = 42)]
pub seed: Option<u64>,
pub prefill: Vec<PrefillToken>,
pub tokens: Vec<Token>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub top_tokens: Vec<Vec<Token>>,
}
#[derive(Serialize, ToSchema)]
pub(crate) struct Details {
#[schema(example = "length")]
pub finish_reason: FinishReason,
#[schema(example = 1)]
pub generated_tokens: u32,
#[schema(nullable = true, example = 42)]
pub seed: Option<u64>,
pub prefill: Vec<PrefillToken>,
pub tokens: Vec<Token>,
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of_sequences: Option<Vec<BestOfSequence>>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub top_tokens: Vec<Vec<Token>>,
}
#[derive(Serialize, ToSchema)]
pub(crate) struct GenerateResponse {
#[schema(example = "test")]
pub generated_text: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub details: Option<Details>,
}
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
#[schema(example = "length")]
pub finish_reason: FinishReason,
#[schema(example = 1)]
pub generated_tokens: u32,
#[schema(nullable = true, example = 42)]
pub seed: Option<u64>,
}
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamResponse {
pub index: u32,
pub token: Token,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub top_tokens: Vec<Token>,
#[schema(nullable = true, default = "null", example = "test")]
pub generated_text: Option<String>,
#[schema(nullable = true, default = "null")]
pub details: Option<StreamDetails>,
}
#[derive(Serialize, ToSchema)]
pub(crate) struct ErrorResponse {
pub error: String,
pub error_type: String,
}
#[cfg(test)]
mod tests {
use tokenizers::Tokenizer;
pub(crate) async fn get_tokenizer() -> Tokenizer {
let api = hf_hub::api::sync::Api::new().unwrap();
let repo = api.model("gpt2".to_string());
let filename = repo.get("tokenizer.json").unwrap();
Tokenizer::from_file(filename).unwrap()
}
}