mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
583 lines
22 KiB
Python
583 lines
22 KiB
Python
import torch
|
|
import torch.distributed
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Tuple, Optional, Dict
|
|
|
|
from accelerate import init_empty_weights
|
|
from safetensors import safe_open
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|
from transformers.models.bloom.parallel_layers import (
|
|
TensorParallelColumnLinear,
|
|
TensorParallelEmbedding,
|
|
TensorParallelRowLinear,
|
|
)
|
|
|
|
from bloom_inference.pb import generate_pb2
|
|
from bloom_inference.utils import (
|
|
StoppingCriteria,
|
|
NextTokenChooser,
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
download_weights,
|
|
)
|
|
|
|
HAS_BITS_AND_BYTES = True
|
|
try:
|
|
import bitsandbytes as bnb
|
|
from bitsandbytes.nn import Int8Params
|
|
except Exception as e:
|
|
HAS_BITS_AND_BYTES = False
|
|
|
|
torch.manual_seed(0)
|
|
|
|
|
|
@dataclass
|
|
class Batch:
|
|
batch_id: int
|
|
requests: List[generate_pb2.Request]
|
|
all_input_lengths: List[int]
|
|
input_ids: Dict[str, torch.Tensor]
|
|
all_input_ids: List[torch.Tensor]
|
|
next_token_choosers: List[NextTokenChooser]
|
|
stopping_criterias: List[StoppingCriteria]
|
|
size: int
|
|
max_sequence_length: int
|
|
|
|
def to_pb(self):
|
|
return generate_pb2.Batch(
|
|
id=self.batch_id,
|
|
requests=self.requests,
|
|
size=self.size,
|
|
max_sequence_length=self.max_sequence_length,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
|
|
) -> "Batch":
|
|
inputs = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
all_input_lengths = []
|
|
|
|
# Parse batch
|
|
for r in pb.requests:
|
|
inputs.append(r.inputs)
|
|
all_input_lengths.append(r.input_length)
|
|
next_token_choosers.append(
|
|
NextTokenChooser(
|
|
temperature=r.parameters.temperature,
|
|
top_k=r.parameters.top_k,
|
|
top_p=r.parameters.top_p,
|
|
do_sample=r.parameters.do_sample,
|
|
)
|
|
)
|
|
stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))
|
|
|
|
input_ids = tokenizer(
|
|
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
|
|
).to(device)
|
|
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
|
|
|
|
return cls(
|
|
batch_id=pb.id,
|
|
requests=pb.requests,
|
|
all_input_lengths=all_input_lengths,
|
|
input_ids=input_ids,
|
|
all_input_ids=all_input_ids,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
size=pb.size,
|
|
max_sequence_length=pb.max_sequence_length,
|
|
)
|
|
|
|
@classmethod
|
|
def concatenate(cls, batches: List["Batch"]) -> "Batch":
|
|
# Used for padding
|
|
total_batch_size = sum(batch.size for batch in batches)
|
|
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
|
|
|
# Batch attributes
|
|
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
|
|
requests = []
|
|
all_input_lengths = []
|
|
all_input_ids = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
|
|
# Used for slicing correctly inside the tensors
|
|
# Equivalent to a cumsum on batch sizes
|
|
start_index = 0
|
|
for i, batch in enumerate(batches):
|
|
requests.extend(batch.requests)
|
|
all_input_lengths.extend(batch.all_input_lengths)
|
|
all_input_ids.extend(batch.all_input_ids)
|
|
next_token_choosers.extend(batch.next_token_choosers)
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + batch.size
|
|
|
|
# We only concatenate batches that did at least one step
|
|
if batch.input_ids["input_ids"].shape[1] > 1:
|
|
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
|
|
|
|
# Initialize tensors
|
|
if i == 0:
|
|
input_ids["input_ids"] = torch.empty(
|
|
(total_batch_size, 1),
|
|
dtype=batch.input_ids["input_ids"].dtype,
|
|
device=batch.input_ids["input_ids"].device,
|
|
)
|
|
input_ids["attention_mask"] = torch.zeros(
|
|
(total_batch_size, max_sequence_length),
|
|
dtype=batch.input_ids["attention_mask"].dtype,
|
|
device=batch.input_ids["attention_mask"].device,
|
|
)
|
|
|
|
# input_ids["input_ids"] is always of shape [batch_size, 1]
|
|
# We do not need to pad it
|
|
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
|
|
|
|
# We need to slice the attention mask to remove padding from previous steps
|
|
input_ids["attention_mask"][
|
|
start_index:end_index, -batch.max_sequence_length :
|
|
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length :]
|
|
|
|
for j, past in enumerate(batch.input_ids["past_key_values"]):
|
|
past_keys = past[0]
|
|
past_values = past[1]
|
|
|
|
_, head_dim, padded_sequence_length = past_keys.shape
|
|
|
|
# Reshape the tensors to make slicing easier
|
|
past_keys = past_keys.view(
|
|
batch.size, -1, head_dim, padded_sequence_length
|
|
)
|
|
past_values = past_values.view(
|
|
batch.size, -1, padded_sequence_length, head_dim
|
|
)
|
|
num_heads = past_keys.shape[1]
|
|
|
|
# Initialize tensors
|
|
# This will run only once per layer
|
|
if j == len(input_ids["past_key_values"]):
|
|
padded_past_keys = torch.zeros(
|
|
(
|
|
total_batch_size,
|
|
num_heads,
|
|
head_dim,
|
|
max_sequence_length - 1,
|
|
),
|
|
dtype=past_keys.dtype,
|
|
device=past_keys.device,
|
|
)
|
|
padded_past_values = torch.zeros(
|
|
(
|
|
total_batch_size,
|
|
num_heads,
|
|
max_sequence_length - 1,
|
|
head_dim,
|
|
),
|
|
dtype=past_values.dtype,
|
|
device=past_values.device,
|
|
)
|
|
input_ids["past_key_values"].append(
|
|
[padded_past_keys, padded_past_values]
|
|
)
|
|
|
|
# We slice the past keys and values to remove the padding from previous batches
|
|
input_ids["past_key_values"][j][0][
|
|
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
|
|
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
|
|
|
|
input_ids["past_key_values"][j][1][
|
|
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
|
|
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
|
|
|
|
# If we are on the last batch, we need to reshape the tensors
|
|
if (i + 1) == len(batches):
|
|
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
|
|
j
|
|
][0].view(total_batch_size * num_heads, head_dim, -1)
|
|
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
|
|
j
|
|
][1].view(total_batch_size * num_heads, -1, head_dim)
|
|
|
|
start_index += batch.size
|
|
|
|
return cls(
|
|
batch_id=batches[0].batch_id,
|
|
requests=requests,
|
|
all_input_lengths=all_input_lengths,
|
|
input_ids=input_ids,
|
|
all_input_ids=all_input_ids,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
size=total_batch_size,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class GeneratedText:
|
|
request: generate_pb2.Request
|
|
output: str
|
|
|
|
def to_pb(self) -> generate_pb2.GeneratedText:
|
|
return generate_pb2.GeneratedText(request=self.request, output=self.output)
|
|
|
|
|
|
class BLOOM:
|
|
def __init__(self, model_name: str):
|
|
if torch.cuda.is_available():
|
|
self.device = torch.device("cuda")
|
|
dtype = torch.bfloat16
|
|
else:
|
|
self.device = torch.device("cpu")
|
|
dtype = torch.float32
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
|
self.model = (
|
|
AutoModelForCausalLM.from_pretrained(model_name)
|
|
.eval()
|
|
.to(self.device)
|
|
.to(dtype)
|
|
)
|
|
self.num_heads = self.model.base_model.num_heads
|
|
|
|
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
|
|
# Model Forward
|
|
return self.model.forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
|
|
def generate_token(
|
|
self, batch: Batch
|
|
) -> Tuple[List[GeneratedText], Optional[Batch]]:
|
|
with torch.inference_mode():
|
|
outputs = self.forward(**batch.input_ids)
|
|
|
|
# List of indices to cache
|
|
next_batch_keep_indices = []
|
|
next_batch_past_keep_indices = []
|
|
|
|
# New input_ids for next forward
|
|
next_batch_input_ids = []
|
|
next_batch_all_input_ids = []
|
|
next_all_input_lengths = []
|
|
|
|
next_batch_size = 0
|
|
next_batch_max_sequence_length = 0
|
|
|
|
# Finished requests
|
|
generated_texts: List[GeneratedText] = []
|
|
|
|
# Zipped iterator
|
|
iterator = zip(
|
|
batch.requests,
|
|
batch.all_input_lengths,
|
|
outputs.logits,
|
|
batch.next_token_choosers,
|
|
batch.stopping_criterias,
|
|
batch.all_input_ids,
|
|
)
|
|
|
|
# For each member of the batch
|
|
for i, (
|
|
request,
|
|
input_length,
|
|
logits,
|
|
next_token_chooser,
|
|
stopping_criteria,
|
|
all_tokens,
|
|
) in enumerate(iterator):
|
|
# Select next token
|
|
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
|
|
|
# Append next token to all tokens
|
|
all_tokens = torch.cat([all_tokens, next_token])
|
|
|
|
# Evaluate stopping criteria
|
|
if stopping_criteria(all_tokens):
|
|
# Decode all tokens
|
|
output = self.tokenizer.decode(
|
|
all_tokens.squeeze(-1), skip_special_tokens=True
|
|
)
|
|
# Add to the list of finished generations with the original request
|
|
generated_texts.append(GeneratedText(request, output))
|
|
# add to the next batch
|
|
else:
|
|
next_batch_keep_indices.append(i)
|
|
# past_key_values is of shape [batch_size * num_heads, ...]
|
|
# so we need to take into account the `num_heads` stride here
|
|
next_batch_past_keep_indices.extend(
|
|
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
|
|
)
|
|
next_batch_input_ids.append(next_token)
|
|
next_batch_all_input_ids.append(all_tokens)
|
|
next_batch_size += 1
|
|
new_input_length = input_length + 1
|
|
next_all_input_lengths.append(new_input_length)
|
|
next_batch_max_sequence_length = max(
|
|
next_batch_max_sequence_length, new_input_length
|
|
)
|
|
|
|
# We finished all generations in the batch; there is no next batch
|
|
if not next_batch_keep_indices:
|
|
return generated_texts, None
|
|
|
|
# If we finished at least one generation
|
|
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
|
if generated_texts:
|
|
# Apply indices to attention mask, past key values and other items that need to be cached
|
|
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
|
next_batch_keep_indices
|
|
]
|
|
next_batch_input_ids["past_key_values"] = [
|
|
(
|
|
keys[next_batch_past_keep_indices],
|
|
values[next_batch_past_keep_indices],
|
|
)
|
|
for keys, values in outputs["past_key_values"]
|
|
]
|
|
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
|
next_batch_next_token_choosers = [
|
|
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
|
]
|
|
next_batch_stopping_criterias = [
|
|
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
|
]
|
|
else:
|
|
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
|
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
|
|
next_batch_requests = batch.requests
|
|
next_batch_next_token_choosers = batch.next_token_choosers
|
|
next_batch_stopping_criterias = batch.stopping_criterias
|
|
|
|
# Update attention_mask with padding as we added a new token to input_ids
|
|
next_batch_input_ids["attention_mask"] = torch.cat(
|
|
[
|
|
next_batch_input_ids["attention_mask"],
|
|
torch.ones((next_batch_size, 1)).to(self.device),
|
|
],
|
|
dim=1,
|
|
)
|
|
|
|
next_batch = Batch(
|
|
batch_id=batch.batch_id,
|
|
requests=next_batch_requests,
|
|
all_input_lengths=next_all_input_lengths,
|
|
input_ids=next_batch_input_ids,
|
|
all_input_ids=next_batch_all_input_ids,
|
|
next_token_choosers=next_batch_next_token_choosers,
|
|
stopping_criterias=next_batch_stopping_criterias,
|
|
size=next_batch_size,
|
|
max_sequence_length=next_batch_max_sequence_length,
|
|
)
|
|
return generated_texts, next_batch
|
|
|
|
|
|
class BLOOMSharded(BLOOM):
|
|
def __init__(self, model_name: str, quantize: bool = False):
|
|
super(BLOOM, self).__init__()
|
|
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
|
self.master = self.rank == 0
|
|
if torch.cuda.is_available():
|
|
self.device = torch.device(f"cuda:{self.rank}")
|
|
dtype = torch.float16
|
|
else:
|
|
self.device = torch.device("cpu")
|
|
dtype = torch.float32
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_name, slow_but_exact=False, tp_parallel=True
|
|
)
|
|
config.pad_token_id = 3
|
|
self.num_heads = config.n_head // self.process_group.size()
|
|
|
|
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
|
# in PyTorch 1.12 and later.
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
# Only download weights for small models
|
|
if self.master and model_name == "bigscience/bloom-560m":
|
|
download_weights(model_name)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
filenames = weight_files(model_name)
|
|
|
|
with init_empty_weights():
|
|
model = AutoModelForCausalLM.from_config(config)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
self.load_weights(
|
|
model,
|
|
filenames,
|
|
quantize=quantize,
|
|
device=self.device,
|
|
rank=self.rank,
|
|
world_size=self.world_size,
|
|
)
|
|
self.model = model.eval().to(dtype)
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
@staticmethod
|
|
def load_weights(
|
|
model,
|
|
filenames: List[str],
|
|
quantize: bool,
|
|
device: torch.device,
|
|
rank: int,
|
|
world_size: int,
|
|
):
|
|
parameters = dict(model.named_parameters())
|
|
for file in filenames:
|
|
with safe_open(
|
|
file, framework="pt", device=str(device) if not quantize else "cpu"
|
|
) as f:
|
|
for name in f.keys():
|
|
full_name = f"transformer.{name}"
|
|
|
|
module_name, param_name = full_name.rsplit(".", 1)
|
|
module = model.get_submodule(module_name)
|
|
current_tensor = parameters[full_name]
|
|
|
|
slice_ = f.get_slice(name)
|
|
|
|
if isinstance(module, TensorParallelColumnLinear):
|
|
if param_name == "weight":
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
tensor = tensor.transpose(1, 0)
|
|
else:
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
elif isinstance(module, TensorParallelRowLinear):
|
|
if param_name == "weight":
|
|
size = slice_.get_shape()[1]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[:, start:stop]
|
|
tensor = tensor.transpose(1, 0)
|
|
else:
|
|
tensor = slice_[:]
|
|
# XXX: Hack for Rowlinear to add the bias only once.
|
|
if rank != 0:
|
|
tensor = torch.zeros_like(tensor)
|
|
elif isinstance(module, TensorParallelEmbedding):
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
else:
|
|
tensor = slice_[:]
|
|
|
|
if current_tensor.shape != tensor.shape:
|
|
raise ValueError(
|
|
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
|
)
|
|
|
|
tensor = tensor.contiguous()
|
|
|
|
if quantize:
|
|
if not HAS_BITS_AND_BYTES:
|
|
raise ImportError(
|
|
"bitsandbytes is not available on your machine"
|
|
)
|
|
|
|
if (
|
|
type(module)
|
|
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
|
and param_name == "weight"
|
|
):
|
|
tensor = Int8Params(
|
|
tensor.transpose(1, 0),
|
|
has_fp16_weights=False,
|
|
requires_grad=False,
|
|
).to(device)
|
|
state = bnb.MatmulLtState()
|
|
state.threshold = 6.0
|
|
state.has_fp16_weights = False
|
|
state.memory_efficient_backward = False
|
|
state.use_pool = True
|
|
state.CB = tensor.CB
|
|
state.SCB = tensor.SCB
|
|
tensor.CB = None
|
|
tensor.SCB = None
|
|
|
|
def replace_linear(state, in_features, out_features):
|
|
def linear(input, weight, bias):
|
|
size_out = input.size()[:-1] + (out_features,)
|
|
input = input.view(-1, in_features)
|
|
out = torch.empty(
|
|
size_out, device=input.device, dtype=input.dtype
|
|
)
|
|
out = bnb.matmul(
|
|
input,
|
|
weight,
|
|
out=out.view(-1, out_features),
|
|
state=state,
|
|
threshold=state.threshold,
|
|
bias=bias,
|
|
)
|
|
|
|
if state.CB is not None:
|
|
# we converted 8-bit row major to turing/ampere format
|
|
# in the first inference pass
|
|
# we no longer need the row-major weight
|
|
del state.CB
|
|
weight.data = state.CxB
|
|
|
|
return out.view(size_out)
|
|
|
|
return linear
|
|
|
|
module.linear = replace_linear(
|
|
state, module.in_features, module.out_features
|
|
)
|
|
|
|
else:
|
|
tensor = tensor.to(device)
|
|
|
|
module._parameters[param_name] = tensor
|
|
if name == "word_embeddings.weight":
|
|
model.lm_head._parameters["weight"] = tensor
|
|
|
|
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
|
|
outputs = self.model.forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
|
|
# Logits are sharded, so we need to gather them
|
|
logits_shard = outputs.logits[:, -1, :].contiguous()
|
|
|
|
batch_size, vocab_shard_size = logits_shard.shape
|
|
vocab_size = self.world_size * vocab_shard_size
|
|
logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
|
|
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
|
|
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
|
|
|
|
outputs.logits = logits
|
|
return outputs
|