mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
672 lines
21 KiB
Python
672 lines
21 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import torch.distributed
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch import nn
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.models.gpt_neox import GPTNeoXConfig
|
|
|
|
# Flash attention imports
|
|
import rotary_emb
|
|
import flash_attn_cuda
|
|
import dropout_layer_norm
|
|
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 6144:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super(FastLayerNorm, self).forward(hidden_states), residual
|
|
else:
|
|
(
|
|
normed_hidden_states,
|
|
residual,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
self.bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.eps,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
False,
|
|
)
|
|
if residual is None:
|
|
residual = hidden_states
|
|
|
|
return normed_hidden_states, residual
|
|
|
|
|
|
class FastLinear(nn.Linear):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
device=None,
|
|
dtype=None,
|
|
) -> None:
|
|
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
|
|
|
def transpose_weight(self):
|
|
self.weight = nn.Parameter(self.weight.T)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
if self.bias is not None:
|
|
return torch.addmm(self.bias, input, self.weight)
|
|
return torch.matmul(input, self.weight)
|
|
|
|
|
|
class TensorParallelColumnLinear(FastLinear):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
bias=True,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_world_size = process_group.size()
|
|
assert out_features % self.tp_world_size == 0
|
|
out_features = out_features // self.tp_world_size
|
|
|
|
super().__init__(
|
|
in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
|
|
class TensorParallelRowLinear(FastLinear):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
reduce=True,
|
|
bias=True,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_world_size = process_group.size()
|
|
self.reduce = reduce
|
|
assert in_features % self.tp_world_size == 0
|
|
in_features = in_features // self.tp_world_size
|
|
|
|
super().__init__(
|
|
in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
out = super(TensorParallelRowLinear, self).forward(input)
|
|
if self.reduce:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
|
|
return out
|
|
|
|
|
|
class TensorParallelEmbedding(nn.Embedding):
|
|
def __init__(
|
|
self,
|
|
num_embeddings,
|
|
embedding_dim,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
padding_idx=None,
|
|
max_norm=None,
|
|
norm_type=2.0,
|
|
scale_grad_by_freq=False,
|
|
sparse=False,
|
|
_weight=None,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_rank = process_group.rank()
|
|
self.tp_world_size = process_group.size()
|
|
|
|
self.original_num_embeddings = num_embeddings
|
|
|
|
assert num_embeddings % self.tp_world_size == 0
|
|
block_size = num_embeddings // self.tp_world_size
|
|
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
|
self.min_id = self.tp_rank * block_size
|
|
self.max_id = (self.tp_rank + 1) * block_size
|
|
|
|
# Additional entry that will map to zero
|
|
# Used for masking
|
|
self.null_idx = block_size
|
|
|
|
super().__init__(
|
|
block_size,
|
|
embedding_dim,
|
|
padding_idx=padding_idx,
|
|
max_norm=max_norm,
|
|
norm_type=norm_type,
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
sparse=sparse,
|
|
_weight=_weight,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
def add_null_idx(self):
|
|
"""Additional 0 entry used for masking"""
|
|
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
|
# translate for [0, self.max_id - self.min_id[
|
|
input = torch.where(
|
|
(self.min_id > input) | (input >= self.max_id),
|
|
self.null_idx,
|
|
input - self.min_id,
|
|
)
|
|
out = super().forward(input)
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
class PositionRotaryEmbedding(RotaryEmbedding):
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
|
"""
|
|
Return cos and sin for the asked position ids
|
|
"""
|
|
|
|
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
|
|
|
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
|
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
|
return cos.unsqueeze(1), sin.unsqueeze(1)
|
|
|
|
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
|
rotary_dim = cos.shape[-1]
|
|
q1 = qkv[:, 0, :, :rotary_dim]
|
|
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
|
k1 = qkv[:, 1, :, :rotary_dim]
|
|
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
|
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
|
return qkv
|
|
|
|
|
|
class FlashNeoxAttention(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_heads,
|
|
hidden_size,
|
|
rotary_pct,
|
|
rotary_emb_base,
|
|
process_group=None,
|
|
reduce=True,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.hidden_size = hidden_size
|
|
self.head_size = hidden_size // num_heads
|
|
|
|
rotary_ndims = int(self.head_size * rotary_pct)
|
|
self.rotary_emb = PositionRotaryEmbedding(rotary_ndims, base=rotary_emb_base)
|
|
self.softmax_scale = self.head_size ** (-0.5)
|
|
|
|
if process_group is None:
|
|
self.query_key_value = FastLinear(hidden_size, 3 * hidden_size)
|
|
self.dense = FastLinear(hidden_size, hidden_size)
|
|
else:
|
|
self.num_heads = self.num_heads // process_group.size()
|
|
self.query_key_value = TensorParallelColumnLinear(
|
|
hidden_size,
|
|
3 * hidden_size,
|
|
process_group=process_group,
|
|
)
|
|
self.dense = TensorParallelRowLinear(
|
|
hidden_size, hidden_size, process_group=process_group, reduce=reduce
|
|
)
|
|
|
|
def shuffle_qkv_dims(self):
|
|
"""Swap dims to avoid an additional permute"""
|
|
self.query_key_value.weight = torch.nn.Parameter(
|
|
self.query_key_value.weight.view(
|
|
self.num_heads, 3, self.head_size, self.hidden_size
|
|
)
|
|
.permute(1, 0, 2, 3)
|
|
.reshape(-1, self.hidden_size)
|
|
)
|
|
self.query_key_value.bias = torch.nn.Parameter(
|
|
self.query_key_value.bias.view(self.num_heads, 3, self.head_size)
|
|
.permute(1, 0, 2)
|
|
.reshape(-1)
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
cos,
|
|
sin,
|
|
cu_seqlens,
|
|
max_s,
|
|
layer_past,
|
|
layer_past_present_indices,
|
|
cu_seqlens_q,
|
|
):
|
|
qkv = self.query_key_value(hidden_states)
|
|
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
|
qkv_rot = self.rotary_emb(qkv, cos, sin)
|
|
|
|
# Prefill
|
|
if layer_past_present_indices is None:
|
|
# Copy to layer past
|
|
layer_past[...] = qkv_rot[:, 1:]
|
|
|
|
# output
|
|
attn_output = torch.empty_like(qkv_rot[:, 0])
|
|
# flash attention
|
|
flash_attn_cuda.fwd(
|
|
qkv_rot[:, 0],
|
|
qkv_rot[:, 1],
|
|
qkv_rot[:, 2],
|
|
attn_output,
|
|
cu_seqlens,
|
|
cu_seqlens,
|
|
max_s,
|
|
max_s,
|
|
0.0,
|
|
self.softmax_scale,
|
|
False,
|
|
True,
|
|
False,
|
|
0,
|
|
None,
|
|
)
|
|
# Decode
|
|
else:
|
|
query = qkv_rot[:, 0]
|
|
# Add present to the layer_past tensor at the correct indices
|
|
layer_past[layer_past_present_indices] = qkv_rot[:, 1:]
|
|
|
|
# output
|
|
attn_output = torch.empty_like(query)
|
|
# flash attention
|
|
flash_attn_cuda.fwd(
|
|
query,
|
|
layer_past[:, 0],
|
|
layer_past[:, 1],
|
|
attn_output,
|
|
cu_seqlens_q,
|
|
cu_seqlens,
|
|
1,
|
|
max_s,
|
|
0.0,
|
|
self.softmax_scale,
|
|
False,
|
|
False,
|
|
False,
|
|
0,
|
|
None,
|
|
)
|
|
|
|
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
|
|
|
|
|
class FlashMLP(nn.Module):
|
|
def __init__(
|
|
self, act, hidden_size, intermediate_size, process_group=None, reduce=True
|
|
):
|
|
super().__init__()
|
|
self.act = (
|
|
ACT2FN[act]
|
|
if "gelu" not in act
|
|
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
|
)
|
|
|
|
if process_group is None:
|
|
self.dense_h_to_4h = FastLinear(hidden_size, intermediate_size)
|
|
self.dense_4h_to_h = FastLinear(intermediate_size, hidden_size)
|
|
else:
|
|
self.dense_h_to_4h = TensorParallelColumnLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
process_group=process_group,
|
|
)
|
|
self.dense_4h_to_h = TensorParallelRowLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
process_group=process_group,
|
|
reduce=reduce,
|
|
)
|
|
self.process_group = process_group
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense_h_to_4h(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.dense_4h_to_h(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class FlashNeoXLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_heads,
|
|
act,
|
|
hidden_size,
|
|
intermediate_size,
|
|
rotary_pct,
|
|
rotary_emb_base,
|
|
layer_norm_eps,
|
|
use_parallel_residual,
|
|
process_group=None,
|
|
):
|
|
super().__init__()
|
|
self.use_parallel_residual = use_parallel_residual
|
|
self.input_layernorm = FastLayerNorm(hidden_size, eps=layer_norm_eps)
|
|
self.post_attention_layernorm = FastLayerNorm(hidden_size, eps=layer_norm_eps)
|
|
self.attention = FlashNeoxAttention(
|
|
num_heads,
|
|
hidden_size,
|
|
rotary_pct,
|
|
rotary_emb_base,
|
|
process_group,
|
|
reduce=not use_parallel_residual,
|
|
)
|
|
self.mlp = FlashMLP(
|
|
act,
|
|
hidden_size,
|
|
intermediate_size,
|
|
process_group,
|
|
reduce=not use_parallel_residual,
|
|
)
|
|
self.process_group = process_group
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
residual,
|
|
cos,
|
|
sin,
|
|
cu_seqlens,
|
|
max_s,
|
|
layer_past,
|
|
layer_past_present_indices,
|
|
cu_seqlens_q,
|
|
):
|
|
if self.use_parallel_residual:
|
|
ln1_hidden_states, _ = self.input_layernorm(hidden_states)
|
|
|
|
attn_output = self.attention(
|
|
ln1_hidden_states,
|
|
cos,
|
|
sin,
|
|
cu_seqlens,
|
|
max_s,
|
|
layer_past,
|
|
layer_past_present_indices,
|
|
cu_seqlens_q,
|
|
)
|
|
|
|
ln2_hidden_states, _ = self.post_attention_layernorm(hidden_states)
|
|
|
|
mlp_output = self.mlp(ln2_hidden_states)
|
|
intermediate = mlp_output + attn_output
|
|
|
|
# Only reduce once and after the addition instead of once per layer
|
|
if self.process_group is not None:
|
|
torch.distributed.all_reduce(intermediate, group=self.process_group)
|
|
|
|
return intermediate + hidden_states, None
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.attention(
|
|
hidden_states,
|
|
cos,
|
|
sin,
|
|
cu_seqlens,
|
|
max_s,
|
|
layer_past,
|
|
layer_past_present_indices,
|
|
cu_seqlens_q,
|
|
)
|
|
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual
|
|
)
|
|
|
|
mlp_output = self.mlp(hidden_states)
|
|
|
|
return mlp_output, residual
|
|
|
|
|
|
class FlashGPTNeoXPreTrainedModel(PreTrainedModel):
|
|
config_class = GPTNeoXConfig
|
|
base_model_prefix = "gpt_neox"
|
|
supports_gradient_checkpointing = False
|
|
_no_split_modules = None
|
|
|
|
|
|
class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
|
def __init__(self, config, process_group=None):
|
|
super().__init__(config)
|
|
self.config = config
|
|
|
|
self.tp_embeddings = False
|
|
if process_group is not None:
|
|
self.tp_rank = process_group.rank()
|
|
self.tp_world_size = process_group.size()
|
|
if config.vocab_size % self.tp_world_size == 0:
|
|
self.tp_embeddings = True
|
|
|
|
if self.tp_embeddings:
|
|
self.embed_in = TensorParallelEmbedding(
|
|
config.vocab_size, config.hidden_size, process_group=process_group
|
|
)
|
|
else:
|
|
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
FlashNeoXLayer(
|
|
config.num_attention_heads,
|
|
config.hidden_act,
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
config.rotary_pct,
|
|
config.rotary_emb_base,
|
|
config.layer_norm_eps,
|
|
config.use_parallel_residual,
|
|
process_group,
|
|
)
|
|
for _ in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.final_layer_norm = FastLayerNorm(
|
|
config.hidden_size, eps=config.layer_norm_eps
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.head_size = self.layers[0].attention.head_size
|
|
self.num_heads = self.layers[0].attention.num_heads
|
|
|
|
def post_load_weights(self):
|
|
if isinstance(self.embed_in, TensorParallelEmbedding):
|
|
self.embed_in.add_null_idx()
|
|
for layer in self.layers:
|
|
layer: FlashNeoXLayer
|
|
layer.attention.shuffle_qkv_dims()
|
|
layer.attention.query_key_value.transpose_weight()
|
|
layer.attention.dense.transpose_weight()
|
|
layer.mlp.dense_h_to_4h.transpose_weight()
|
|
layer.mlp.dense_4h_to_h.transpose_weight()
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
model = super(FlashGPTNeoXModel, cls).from_pretrained(
|
|
pretrained_model_name_or_path, *model_args, **kwargs
|
|
)
|
|
model.post_load_weights()
|
|
return model
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
position_ids,
|
|
cu_seqlens,
|
|
max_s,
|
|
past_key_values=None,
|
|
):
|
|
hidden_states = self.embed_in(input_ids)
|
|
|
|
# Prefill
|
|
if past_key_values is None:
|
|
# Create past tensor
|
|
past_key_values = hidden_states.new_empty(
|
|
(
|
|
len(self.layers),
|
|
len(hidden_states),
|
|
2,
|
|
self.num_heads,
|
|
self.head_size,
|
|
)
|
|
)
|
|
layer_past_present_indices = None
|
|
cu_seqlens_q = None
|
|
# Decode
|
|
else:
|
|
# Create indices from cumulative sequence lengths
|
|
layer_past_present_indices = cu_seqlens[1:] - 1
|
|
cu_seqlens_q = torch.arange(
|
|
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
|
)
|
|
|
|
# Get rotary cos and sin for this forward
|
|
# Avoid to index in each layer
|
|
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(
|
|
position_ids, max_s, hidden_states.dtype
|
|
)
|
|
|
|
residual = None
|
|
for i, layer in enumerate(self.layers):
|
|
hidden_states, residual = layer(
|
|
hidden_states,
|
|
residual,
|
|
cos,
|
|
sin,
|
|
cu_seqlens,
|
|
max_s,
|
|
past_key_values[i],
|
|
layer_past_present_indices,
|
|
cu_seqlens_q,
|
|
)
|
|
|
|
hidden_states, _ = self.final_layer_norm(hidden_states, residual)
|
|
|
|
return hidden_states, past_key_values
|
|
|
|
|
|
class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
if config.tp_parallel:
|
|
process_group = torch.distributed.distributed_c10d._get_default_group()
|
|
else:
|
|
process_group = None
|
|
|
|
self.gpt_neox = FlashGPTNeoXModel(config, process_group)
|
|
|
|
if self.gpt_neox.tp_embeddings:
|
|
self.embed_out = FastLinear(
|
|
config.hidden_size,
|
|
config.vocab_size // process_group.size(),
|
|
bias=False,
|
|
)
|
|
else:
|
|
self.embed_out = FastLinear(
|
|
config.hidden_size, config.vocab_size, bias=False
|
|
)
|
|
|
|
def post_load_weights(self):
|
|
self.gpt_neox.post_load_weights()
|
|
self.embed_out.transpose_weight()
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
model = super(FlashGPTNeoXForCausalLM, cls).from_pretrained(
|
|
pretrained_model_name_or_path, *model_args, **kwargs
|
|
)
|
|
model.post_load_weights()
|
|
return model
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
position_ids,
|
|
cu_seqlens,
|
|
max_s,
|
|
past_key_values=None,
|
|
):
|
|
hidden_states, present = self.gpt_neox(
|
|
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
|
)
|
|
return self.embed_out(hidden_states), present
|