mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
1090 lines
41 KiB
Python
1090 lines
41 KiB
Python
import bisect
|
|
from dataclasses import dataclass
|
|
from functools import wraps
|
|
import itertools
|
|
import math
|
|
import os
|
|
import tempfile
|
|
from typing import Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
from loguru import logger
|
|
from opentelemetry import trace
|
|
|
|
import text_generation_server.habana_quantization_env as hq_env
|
|
import habana_frameworks.torch as htorch
|
|
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
|
|
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
|
from optimum.habana.utils import HabanaProfile
|
|
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
|
|
from optimum.habana.checkpoint_utils import (
|
|
get_repo_root,
|
|
model_on_meta,
|
|
write_checkpoints_json,
|
|
)
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
AutoModelForCausalLM,
|
|
PreTrainedTokenizerBase,
|
|
AutoConfig,
|
|
)
|
|
|
|
from text_generation_server.utils.tokens import batch_top_tokens
|
|
from text_generation_server.models import Model
|
|
from text_generation_server.models.types import (
|
|
Batch,
|
|
PrefillTokens,
|
|
Generation,
|
|
GeneratedText,
|
|
TopTokens,
|
|
)
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.utils import (
|
|
HeterogeneousNextTokenChooser,
|
|
StoppingCriteria,
|
|
make_tokenizer_optional,
|
|
is_tokenizer_transparent,
|
|
)
|
|
from text_generation_server.utils.debug import dbg_trace
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
MAX_TOTAL_TOKENS = int(os.environ.get('MAX_TOTAL_TOKENS', 2048))
|
|
BATCH_BUCKET_SIZE = int(os.environ.get('BATCH_BUCKET_SIZE', 8))
|
|
PAD_SEQUENCE_TO_MULTIPLE_OF = int(os.environ.get('PAD_SEQUENCE_TO_MULTIPLE_OF', 128))
|
|
PREFILL_BATCH_BUCKET_SIZE = int(os.environ.get('PREFILL_BATCH_BUCKET_SIZE', 4))
|
|
CHUNK_SIZES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
|
|
|
|
|
|
def round_up(number, k):
|
|
return (number + k - 1) // k * k
|
|
|
|
|
|
def to_tensor_indices(indices, device):
|
|
return torch.tensor(indices, dtype=torch.int32, device=device)
|
|
|
|
|
|
def calculate_chunks(offset):
|
|
result = []
|
|
while offset != 0:
|
|
sign = 1 if offset > 0 else -1
|
|
best_chunk = min((abs(offset - sign * c), sign * c) for c in CHUNK_SIZES)[1]
|
|
result.append(best_chunk)
|
|
offset = offset - best_chunk
|
|
return result
|
|
|
|
|
|
def biggest_single_chunk(offset):
|
|
if offset != 0:
|
|
idx = bisect.bisect(CHUNK_SIZES, abs(offset))
|
|
return int(math.copysign(CHUNK_SIZES[idx - 1], offset))
|
|
else:
|
|
return 0
|
|
|
|
|
|
def grouped_pad(tensor_groups, dims, values):
|
|
grouped_result = []
|
|
for tensors, dim, value in zip(tensor_groups, dims, values):
|
|
padding = MAX_TOTAL_TOKENS - tensors[0].size(dim) if dim is not None else 0
|
|
if padding > 0:
|
|
assert dim in [-1, -2], f'Only dims -1 and -2 are supported! {dim}'
|
|
pad_shape = (0, 0, 0, padding) if dim == -2 else (0, padding)
|
|
result = [torch.nn.functional.pad(t, pad_shape, value=value) for t in tensors]
|
|
else:
|
|
result = [t for t in tensors]
|
|
grouped_result.append(result)
|
|
htorch.core.mark_step()
|
|
return grouped_result
|
|
|
|
|
|
def roll(tensor, chunk, dim, merge_graphs):
|
|
if dim is None:
|
|
return tensor
|
|
tensor = torch.roll(tensor, chunk, dim)
|
|
if not merge_graphs:
|
|
htorch.core.mark_step()
|
|
return tensor
|
|
|
|
|
|
def grouped_roll(tensor_groups, chunk, dims, merge_graphs):
|
|
tensor_groups = [[roll(t, chunk, dim, merge_graphs) for t in tensors] for tensors, dim in zip(tensor_groups, dims)]
|
|
if merge_graphs:
|
|
htorch.core.mark_step()
|
|
return tensor_groups
|
|
|
|
|
|
def grouped_shift(tensor_groups, dims, offset, merge_graphs):
|
|
chunks = calculate_chunks(offset)
|
|
for c in chunks:
|
|
tensor_groups = grouped_roll(tensor_groups, c, dims, merge_graphs)
|
|
return tensor_groups
|
|
|
|
|
|
def move(dst_tensors, dst_indices, src_tensors):
|
|
bs_dim = 0
|
|
num_indices = dst_indices.size(0)
|
|
for i, (dst_t, src_t) in enumerate(zip(dst_tensors, src_tensors)):
|
|
if src_t.size(bs_dim) != num_indices:
|
|
src_t = torch.narrow(src_t, bs_dim, 0, num_indices)
|
|
dst_t.index_copy_(bs_dim, dst_indices, src_t)
|
|
htorch.core.mark_step()
|
|
|
|
|
|
def grouped_move(dst_tensor_groups, dst_indices, src_tensor_groups):
|
|
for dst_tensors, src_tensors in zip(dst_tensor_groups, src_tensor_groups):
|
|
move(dst_tensors, dst_indices, src_tensors)
|
|
|
|
|
|
def extend_tensor(tensor, padding, dim):
|
|
result = torch.cat([tensor, padding], dim=dim)
|
|
htorch.core.mark_step()
|
|
return result
|
|
|
|
|
|
def extend_batch(tensors, target_bs, dim):
|
|
diff = target_bs - tensors[0].size(dim)
|
|
# TODO: add support for shrinking bs
|
|
if diff <= 0:
|
|
return tensors
|
|
shape = list(tensors[0].shape)
|
|
shape[dim] = diff
|
|
padding = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
|
|
tensors = [extend_tensor(t, padding, dim) for t in tensors]
|
|
return tensors
|
|
|
|
|
|
def grouped_extend_batch(tensor_groups, target_bs, bs_dims):
|
|
tensor_groups = [extend_batch(tensors, target_bs, dim) for tensors, dim in zip(tensor_groups, bs_dims)]
|
|
return tensor_groups
|
|
|
|
|
|
def merge(tensor_group):
|
|
tensor_group = [torch.stack(tensor_group)]
|
|
htorch.core.mark_step()
|
|
return tensor_group
|
|
|
|
|
|
def split(tensor_group, clone_data):
|
|
tensor_group = [t.squeeze(0) for t in torch.split(tensor_group[0], 1)]
|
|
if clone_data:
|
|
tensor_group = [t.clone() for t in tensor_group]
|
|
htorch.core.mark_step()
|
|
return tensor_group
|
|
|
|
|
|
def remove_kv_cache_from_output(module):
|
|
orig_fwd = module.forward
|
|
|
|
@wraps(orig_fwd)
|
|
def forward(*args, **kwargs):
|
|
if kwargs["past_key_values"] is not None:
|
|
kwargs["return_dict"] = False
|
|
output = orig_fwd(*args, **kwargs)
|
|
first_value, second_value, *_ = output
|
|
if first_value.nelement() < 2:
|
|
return second_value
|
|
else:
|
|
return first_value
|
|
else:
|
|
kwargs["return_dict"] = True
|
|
return orig_fwd(*args, **kwargs)
|
|
|
|
module.forward = forward
|
|
return module
|
|
|
|
|
|
@dataclass
|
|
class CausalLMRequest:
|
|
idx: int
|
|
data: generate_pb2.Request
|
|
input_length: int
|
|
prefix_offset: int
|
|
read_offset: int
|
|
stopping_criteria: StoppingCriteria
|
|
|
|
all_input_ids: torch.Tensor
|
|
|
|
@classmethod
|
|
def from_pb(cls, idx: int, data: generate_pb2.Request, tokenizer: PreTrainedTokenizerBase):
|
|
return cls(
|
|
idx=idx,
|
|
data=data,
|
|
input_length=None,
|
|
prefix_offset=None,
|
|
read_offset=None,
|
|
stopping_criteria=StoppingCriteria.from_pb(data.stopping_parameters, tokenizer),
|
|
all_input_ids=None,)
|
|
|
|
def update_idx(self, new_idx):
|
|
prev = self.idx
|
|
self.idx = new_idx
|
|
return (new_idx, prev)
|
|
|
|
|
|
@dataclass
|
|
class CausalLMBatch(Batch):
|
|
batch_id: int
|
|
requests: List[CausalLMRequest]
|
|
|
|
# Decoder values
|
|
input_ids: torch.Tensor
|
|
attention_mask: torch.Tensor
|
|
position_ids: torch.Tensor
|
|
past_key_values: Optional[List[Tuple]]
|
|
merged_kv_cache: bool
|
|
|
|
# Generation helpers
|
|
next_token_chooser: HeterogeneousNextTokenChooser
|
|
top_n_tokens: List[int]
|
|
top_n_tokens_tensor: torch.Tensor
|
|
|
|
input_length: int
|
|
|
|
logits = None
|
|
past = None
|
|
|
|
keys_head_dim_last: bool = True
|
|
|
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
|
return generate_pb2.CachedBatch(
|
|
id=self.batch_id,
|
|
request_ids=[r.data.id for r in self.requests],
|
|
size=len(self),
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
|
|
def detach_kv_cache(self):
|
|
past_keys = [past[0] for past in self.past_key_values]
|
|
past_values = [past[1] for past in self.past_key_values]
|
|
del self.past_key_values
|
|
return past_keys, past_values
|
|
|
|
def attach_kv_cache(self, past_keys, past_values):
|
|
# TODO: Add support for models that don't store kv_cache in a list
|
|
self.past_key_values = list(zip(past_keys, past_values))
|
|
|
|
def merge_kv_cache_if_needed(self, target_bs, offset):
|
|
pad_needed = self.seq_length < MAX_TOTAL_TOKENS
|
|
shift_needed = offset != 0
|
|
expand_needed = target_bs > self.batch_size
|
|
# Very simple heuristic to determine whether we should merge tensors
|
|
# this needs tuning for other models/scenarios
|
|
small_bs = len(self.past_key_values) > self.batch_size
|
|
if not self.merged_kv_cache and small_bs and (pad_needed or shift_needed or expand_needed):
|
|
past_keys, past_values = self.detach_kv_cache()
|
|
past_keys = merge(past_keys)
|
|
past_values = merge(past_values)
|
|
self.attach_kv_cache(past_keys, past_values)
|
|
self.merged_kv_cache = True
|
|
|
|
def split_kv_cache_if_needed(self, clone_data):
|
|
if self.merged_kv_cache:
|
|
past_keys, past_values = self.detach_kv_cache()
|
|
past_keys = split(past_keys, clone_data)
|
|
past_values = split(past_values, clone_data)
|
|
self.attach_kv_cache(past_keys, past_values)
|
|
self.merged_kv_cache = False
|
|
|
|
def get_tensor_groups(self):
|
|
past_keys, past_values = self.detach_kv_cache()
|
|
seq_dim = -1
|
|
key_dim = -2 if self.keys_head_dim_last else -1
|
|
value_dim = -2
|
|
tensors = [[self.input_ids], [self.attention_mask], [self.position_ids], past_keys, past_values]
|
|
# We don't need to align position_ids
|
|
seq_dims = [seq_dim, seq_dim, None, key_dim, value_dim]
|
|
bs_dims = [0, 0, 0] + ([1, 1] if self.merged_kv_cache else [0, 0])
|
|
return tensors, seq_dims, bs_dims
|
|
|
|
def set_tensor_groups(self, tensors):
|
|
self.input_ids = tensors.pop(0)[0]
|
|
self.attention_mask = tensors.pop(0)[0]
|
|
self.position_ids = tensors.pop(0)[0]
|
|
past_keys = tensors.pop(0)
|
|
past_values = tensors.pop(0)
|
|
self.attach_kv_cache(past_keys, past_values)
|
|
|
|
def realign(self, target_bs, offset, pad_token_id):
|
|
tensors, seq_dims, _ = self.get_tensor_groups()
|
|
tensors = grouped_pad(tensors, seq_dims, [pad_token_id, 0, 0, 0, 0])
|
|
tensors = grouped_shift(tensors, seq_dims, offset, self.merged_kv_cache)
|
|
self.set_tensor_groups(tensors)
|
|
|
|
def expand_bs(self, target_bs):
|
|
tensors, _, bs_dims = self.get_tensor_groups()
|
|
tensors = grouped_extend_batch(tensors, target_bs, bs_dims)
|
|
self.set_tensor_groups(tensors)
|
|
|
|
def used_indices(self):
|
|
return [req.idx for req in self.requests]
|
|
|
|
def update_indices(self, new_indices):
|
|
for req, new_idx in zip(self.requests, new_indices):
|
|
req.idx = new_idx
|
|
return self.used_indices()
|
|
|
|
def free_indices_generator(self):
|
|
used = set(req.idx for req in self.requests)
|
|
return (i for i in range(self.batch_size) if i not in used)
|
|
|
|
def move_data(self, src_batches):
|
|
dst_tensors, _, dst_dims = self.get_tensor_groups()
|
|
free_indices_gen = self.free_indices_generator()
|
|
for src_b in src_batches:
|
|
dst_indices = to_tensor_indices(src_b.update_indices(free_indices_gen), self.input_ids.device)
|
|
src_tensors, _, src_dims = src_b.get_tensor_groups()
|
|
grouped_move(dst_tensors, dst_indices, src_tensors)
|
|
self.set_tensor_groups(dst_tensors)
|
|
|
|
@classmethod
|
|
def recombine(cls, batches: List["CausalLMBatch"], pad_token_id: int) -> "CausalLMBatch":
|
|
total_requests = sum(len(b) for b in batches)
|
|
new_bs = round_up(total_requests, BATCH_BUCKET_SIZE)
|
|
batch_id = batches[0].batch_id
|
|
device = batches[0].input_ids.device
|
|
|
|
input_lengths = [b.input_length for b in batches]
|
|
max_input_length = max(input_lengths)
|
|
offsets = [max_input_length - b.input_length for b in batches]
|
|
cur_padding = [b.right_padding for b in batches]
|
|
# For prefill there is a space allocated only for first token
|
|
# Need to add padding to the max total tokens before first decode
|
|
|
|
moves_needed = [total_requests - len(b) if b.batch_size == new_bs else total_requests for b in batches]
|
|
dst_batch_idx = min(enumerate(moves_needed), key=lambda idx_val: idx_val[1])[0]
|
|
reshape = (batches[dst_batch_idx].batch_size != new_bs)
|
|
|
|
# TODO: Add support for changing max seq len, i.e. due to output length bucketing
|
|
# FIXME: max_seq_len for non optimized code
|
|
if len(batches) > 1:
|
|
scenario = 'CONCAT'
|
|
elif reshape:
|
|
scenario = 'RESHAPE'
|
|
elif cur_padding[dst_batch_idx] <= 0:
|
|
scenario = 'SHIFT'
|
|
offsets = [biggest_single_chunk(b.max_input_length - max_input_length) for b in batches]
|
|
max_input_length = max_input_length + offsets[dst_batch_idx]
|
|
else:
|
|
# Nothing to do
|
|
return batches[0]
|
|
|
|
dbg_trace(
|
|
scenario, f'bs:{[b.batch_size for b in batches]}->{new_bs}'
|
|
f' reqs:{[len(b) for b in batches]}'
|
|
f' offsets:{offsets}'
|
|
f' input_lengths:{input_lengths}'
|
|
f' cur_padding:{cur_padding}'
|
|
f' dst_batch:{dst_batch_idx}')
|
|
|
|
grouped_requests = [[req for req in batch.requests] for batch in batches]
|
|
flat_requests = list(itertools.chain(*grouped_requests))
|
|
|
|
for i in range(len(batches)):
|
|
target_bs = new_bs if i == dst_batch_idx else batches[i].batch_size
|
|
batches[i].merge_kv_cache_if_needed(target_bs, offsets[i])
|
|
batches[i].realign(target_bs, offsets[i], pad_token_id)
|
|
batches[i].split_kv_cache_if_needed(i == dst_batch_idx)
|
|
batches[dst_batch_idx].expand_bs(new_bs)
|
|
batches[dst_batch_idx].move_data([batches[i] for i in range(len(batches)) if i != dst_batch_idx])
|
|
|
|
top_n_tokens = [r.data.top_n_tokens for r in flat_requests]
|
|
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
|
|
|
|
parameters = [r.data.parameters for r in flat_requests]
|
|
if len(flat_requests) < new_bs:
|
|
for i in range(new_bs-len(flat_requests)) :
|
|
# append the dummy parameters for dummy request
|
|
parameters.append(parameters[0])
|
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
parameters,
|
|
batches[dst_batch_idx].next_token_chooser.dtype,
|
|
batches[dst_batch_idx].next_token_chooser.device,
|
|
hq_env.is_quantization_enabled
|
|
)
|
|
|
|
input_ids = batches[dst_batch_idx].input_ids
|
|
attention_mask = batches[dst_batch_idx].attention_mask
|
|
position_ids = batches[dst_batch_idx].position_ids
|
|
past_key_values = batches[dst_batch_idx].past_key_values
|
|
input_length = max_input_length
|
|
|
|
htorch.core.mark_step()
|
|
|
|
return cls(
|
|
batch_id=batch_id,
|
|
requests=flat_requests,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
merged_kv_cache=False,
|
|
next_token_chooser=next_token_chooser,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
input_length=input_length,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "CausalLMBatch":
|
|
dbg_trace('FROM_PB', f'num_reqs:{len(pb.requests)}')
|
|
requests = [CausalLMRequest.from_pb(idx, req, tokenizer) for idx, req in enumerate(pb.requests)]
|
|
|
|
max_input_length = max(r.data.truncate for r in requests)
|
|
max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests)
|
|
|
|
# TODO: Add support for sparse batches
|
|
top_n_tokens = [r.top_n_tokens for r in pb.requests]
|
|
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
|
|
|
|
# TODO: by tokenizing all inputs at once we loose information on actual input lengths
|
|
# this means that we cannot shift inputs to the left after a long input sequence
|
|
# was filtered out
|
|
new_bs = round_up(len(requests), PREFILL_BATCH_BUCKET_SIZE)
|
|
dummy_inputs = ["?"] * (new_bs - len(requests))
|
|
parameters = [r.parameters for r in pb.requests]
|
|
if len(pb.requests) < new_bs:
|
|
for i in range(new_bs-len(pb.requests)) :
|
|
#append the dummy parameters for dummy request
|
|
parameters.append(parameters[0])
|
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
parameters, dtype, device, hq_env.is_quantization_enabled
|
|
)
|
|
tokenized_inputs = tokenizer(
|
|
[r.data.inputs for r in requests] + dummy_inputs,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
return_token_type_ids=False,
|
|
truncation=True,
|
|
max_length=max_input_length,
|
|
)
|
|
|
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
|
|
|
bucket_size = max_input_length
|
|
left_padding = max_input_length - input_len
|
|
if input_len < max_input_length and PAD_SEQUENCE_TO_MULTIPLE_OF != 0:
|
|
assert PAD_SEQUENCE_TO_MULTIPLE_OF <= max_input_length, "PAD_SEQUENCE_TO_MULTIPLE_OF cannot be higher than max_input_length"
|
|
rounded_seq_len = round_up(input_len + 1, PAD_SEQUENCE_TO_MULTIPLE_OF)
|
|
if rounded_seq_len <= max_input_length:
|
|
bucket_size = rounded_seq_len - 1
|
|
else:
|
|
bucket_size = max_input_length - 1
|
|
left_padding = bucket_size - input_len
|
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
|
attention_mask = tokenized_inputs["attention_mask"]
|
|
|
|
# Allocate space for first token
|
|
input_ids = torch.nn.functional.pad(
|
|
input_ids, (left_padding, 1), value=tokenizer.pad_token_id
|
|
)
|
|
attention_mask = torch.nn.functional.pad(
|
|
attention_mask, (left_padding, 1), value=0
|
|
)
|
|
all_input_ids = torch.nn.functional.pad(
|
|
input_ids, (0, max_new_tokens), value=tokenizer.pad_token_id
|
|
).T.split(1, dim=1)
|
|
|
|
# New input length after left padding
|
|
input_len = bucket_size
|
|
for r in requests:
|
|
r.input_length = input_len
|
|
r.prefix_offset = input_len - 5
|
|
r.read_offset = input_len
|
|
r.all_input_ids = all_input_ids[r.idx]
|
|
|
|
input_ids = input_ids.to(device)
|
|
attention_mask = attention_mask.to(device)
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
|
|
htorch.core.mark_step()
|
|
|
|
return cls(
|
|
batch_id=pb.id,
|
|
requests=requests,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=None,
|
|
merged_kv_cache=False,
|
|
next_token_chooser=next_token_chooser,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
input_length=input_len,
|
|
)
|
|
|
|
@tracer.start_as_current_span("filter")
|
|
def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
|
|
dbg_trace('FILTER', f'num_reqs:{len(self.requests)} -> {len(request_ids)}')
|
|
request_ids = set(request_ids)
|
|
self.requests = [req for req in self.requests if req.data.id in request_ids]
|
|
return self
|
|
|
|
@classmethod
|
|
@tracer.start_as_current_span("concatenate")
|
|
def concatenate(cls, batches: List["CausalLMBatch"], pad_token_id: int = 0) -> "CausalLMBatch":
|
|
return cls.recombine(batches, pad_token_id)
|
|
|
|
def __len__(self):
|
|
return len(self.requests)
|
|
|
|
@property
|
|
def max_input_length(self):
|
|
return max(req.input_length for req in self.requests)
|
|
|
|
@property
|
|
def batch_size(self):
|
|
return self.attention_mask.size(0)
|
|
|
|
@property
|
|
def seq_length(self):
|
|
return self.attention_mask.size(1)
|
|
|
|
@property
|
|
def right_padding(self):
|
|
return self.seq_length - self.input_length
|
|
|
|
# Maximum number of tokens this batch will grow to
|
|
@property
|
|
def max_tokens(self):
|
|
max_total_tokens = self.attention_mask.size(1)
|
|
return len(self.requests) * max_total_tokens
|
|
|
|
|
|
class CausalLM(Model):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
adapt_transformers_to_gaudi()
|
|
|
|
# Create tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
)
|
|
make_tokenizer_optional(tokenizer)
|
|
|
|
# Create model
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
rank = int(os.getenv("RANK", "0"))
|
|
dtype = torch.bfloat16 if dtype is None else dtype
|
|
device = torch.device("hpu")
|
|
|
|
if hq_env.is_quantization_enabled:
|
|
htorch.core.hpu_set_env()
|
|
|
|
if world_size > 1:
|
|
model = self.get_deepspeed_model(
|
|
model_id, dtype, revision
|
|
)
|
|
model = self.prepare_model_for_quantization(model)
|
|
else:
|
|
get_repo_root(model_id)
|
|
|
|
# Check support for rope scaling
|
|
model_kwargs = {}
|
|
config = AutoConfig.from_pretrained(
|
|
model_id
|
|
)
|
|
if hasattr(config, "rope_scaling"):
|
|
model_kwargs["rope_scaling"] = self.get_rope_scaling()
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
torch_dtype=dtype,
|
|
**model_kwargs
|
|
)
|
|
model = self.prepare_model_for_quantization(model)
|
|
model = model.eval().to(device)
|
|
|
|
self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true"
|
|
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
|
|
model = remove_kv_cache_from_output(model)
|
|
if self.enable_hpu_graph:
|
|
model = wrap_in_hpu_graph(model, disable_tensor_cache=True)
|
|
|
|
model = self.setup_quantization(model)
|
|
|
|
if model.config.model_type not in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
|
|
raise ValueError(f"Model type {model.config.model_type} is not supported!")
|
|
|
|
if tokenizer.pad_token_id is None:
|
|
if model.config.pad_token_id is not None:
|
|
tokenizer.pad_token_id = model.config.pad_token_id
|
|
elif model.config.eos_token_id is not None:
|
|
tokenizer.pad_token_id = model.config.eos_token_id
|
|
elif tokenizer.eos_token_id is not None:
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
else:
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
|
|
kwargs = {
|
|
"use_cache": True,
|
|
"return_dict": True,
|
|
}
|
|
|
|
if model.config.model_type == "llama":
|
|
kwargs["attn_softmax_bf16"] = True
|
|
kwargs["trim_logits"] = True
|
|
|
|
super(CausalLM, self).__init__(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
requires_padding=True,
|
|
dtype=dtype,
|
|
device=device,
|
|
rank=rank,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
# Create profiler
|
|
ranks_to_profile = [int(val) for val in os.getenv("PROF_RANKS", "0").split(',')]
|
|
record_shapes = os.getenv("PROF_RECORD_SHAPES", "false").lower() == "true"
|
|
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
|
|
self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0")) if rank in ranks_to_profile else 0
|
|
self.profiling_steps = int(os.getenv("PROF_STEP", "0")) if rank in ranks_to_profile else 0
|
|
self.profiling_wait_steps = int(os.getenv("PROF_WAITSTEP", "0"))
|
|
if self.profiling_steps > 0:
|
|
self.hb_profiler = HabanaProfile(
|
|
wait=self.profiling_wait_steps,
|
|
warmup=self.profiling_warmup_steps,
|
|
active=self.profiling_steps,
|
|
output_dir=output_dir,
|
|
record_shapes=record_shapes
|
|
)
|
|
self.hb_profiler.start()
|
|
else:
|
|
self.hb_profiler = None
|
|
self.step = 0
|
|
|
|
def get_deepspeed_model(
|
|
self,
|
|
model_id: str,
|
|
dtype: torch.dtype,
|
|
revision: Optional[str] = None
|
|
) -> torch.nn.Module:
|
|
import deepspeed
|
|
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
|
|
|
|
world_size, rank, local_rank = initialize_distributed_hpu()
|
|
model_kwargs = {
|
|
"revision": revision
|
|
}
|
|
|
|
# Initialize process(es) for DeepSpeed
|
|
deepspeed.init_distributed(dist_backend="hccl")
|
|
logger.info(
|
|
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank)
|
|
)
|
|
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
|
|
load_to_meta = model_on_meta(config)
|
|
|
|
# Check support for rope scaling
|
|
if hasattr(config, "rope_scaling"):
|
|
config.rope_scaling = self.get_rope_scaling()
|
|
model_kwargs["rope_scaling"] = self.get_rope_scaling()
|
|
|
|
if load_to_meta:
|
|
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
|
|
with deepspeed.OnDevice(dtype=dtype, device="meta"):
|
|
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
|
|
else:
|
|
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
|
|
# TODO: revisit placement on CPU when auto-injection is possible
|
|
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs)
|
|
model = model.eval()
|
|
|
|
# Initialize the model
|
|
ds_inference_kwargs = {"dtype": dtype}
|
|
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
|
|
ds_inference_kwargs["enable_cuda_graph"] = False
|
|
|
|
if load_to_meta:
|
|
# model loaded to meta is managed differently
|
|
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
|
|
write_checkpoints_json(model_id, local_rank, checkpoints_json)
|
|
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
|
|
model = deepspeed.init_inference(model, **ds_inference_kwargs)
|
|
|
|
return model.module
|
|
|
|
def get_rope_scaling(self) -> Optional[Dict]:
|
|
rope_scaling = os.getenv("ROPE_SCALING", None)
|
|
if rope_scaling is None:
|
|
return None
|
|
|
|
rope_factor = float(os.getenv("ROPE_FACTOR", 1.0))
|
|
return {
|
|
'type': rope_scaling, 'factor': float(rope_factor)
|
|
}
|
|
|
|
def setup_quantization(self, model):
|
|
if hq_env.is_quantization_enabled:
|
|
htorch.core.quantization._mark_params_as_const(model)
|
|
htorch.core.quantization._check_params_as_const(model)
|
|
htorch.core.hpu_initialize(model)
|
|
return model
|
|
|
|
def prepare_model_for_quantization(self, model):
|
|
if hq_env.is_quantization_enabled:
|
|
if model.config.model_type == "llama":
|
|
self.patch_scoped_linear_all_reduce(model)
|
|
import habana_quantization_toolkit
|
|
habana_quantization_toolkit.prep_model(model)
|
|
return model
|
|
|
|
def finish_quantization_measurements(self, model):
|
|
if hq_env.is_quantization_enabled:
|
|
import habana_quantization_toolkit
|
|
habana_quantization_toolkit.finish_measurements(self.model)
|
|
return model
|
|
|
|
def patch_scoped_linear_all_reduce(self, model):
|
|
from deepspeed.module_inject.layers import LinearAllreduce
|
|
from optimum.habana.transformers.models.modeling_all_models import ScopedLinearAllReduce
|
|
for name, module in model.named_children():
|
|
if type(module) is LinearAllreduce:
|
|
SL = ScopedLinearAllReduce(mod=module)
|
|
setattr(model, name, SL)
|
|
self.patch_scoped_linear_all_reduce(module)
|
|
|
|
@property
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
return CausalLMBatch
|
|
|
|
def decode(self, generated_ids: List[int]) -> str:
|
|
return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
|
|
|
def decode_token(
|
|
self,
|
|
all_input_ids: List[int],
|
|
prefix_offset: int = 0,
|
|
read_offset: int = 0,
|
|
) -> Tuple[str, int, int]:
|
|
if is_tokenizer_transparent(self.tokenizer):
|
|
new_text = self.tokenizer.decode(all_input_ids[read_offset:], skip_special_tokens=False)
|
|
return new_text, read_offset, len(all_input_ids)
|
|
else:
|
|
return super().decode_token(all_input_ids, prefix_offset, read_offset)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
attention_mask,
|
|
position_ids,
|
|
token_idx,
|
|
past_key_values: Optional = None,
|
|
bypass_hpu_graph: Optional = None,
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
# Model Forward
|
|
kwargs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"past_key_values": past_key_values,
|
|
"token_idx": token_idx
|
|
}
|
|
|
|
if self.has_position_ids:
|
|
kwargs["position_ids"] = position_ids
|
|
|
|
if bypass_hpu_graph != None:
|
|
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
|
|
|
|
kwargs.update(self.kwargs)
|
|
if past_key_values is not None:
|
|
return self.model.forward(**kwargs)
|
|
else:
|
|
outputs = self.model.forward(**kwargs)
|
|
return outputs.logits, outputs.past_key_values
|
|
|
|
@tracer.start_as_current_span("generate_token")
|
|
def generate_token(self, batches: List[CausalLMBatch]) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
|
|
# Results
|
|
generations: List[Generation] = []
|
|
prev_batches = []
|
|
requests_to_generate = []
|
|
# In order to pipeline any actions on CPU we perform the operation in 3 main stages:
|
|
# Stage 1. Collect next token ids of any previously started generations
|
|
for batch_id, batch in enumerate(batches):
|
|
if batch.logits is not None:
|
|
logits = batch.logits
|
|
past = batch.past
|
|
prefill = batch.past_key_values is None
|
|
if prefill:
|
|
# no right padding for prefill
|
|
token_idx_scalar = batch.attention_mask.shape[-1] - 1
|
|
token_idx = torch.tensor(token_idx_scalar).to(self.device)
|
|
else:
|
|
token_idx_scalar = batch.attention_mask.shape[-1] - batch.right_padding
|
|
token_idx = torch.tensor(token_idx_scalar).to(self.device)
|
|
|
|
# Select next token
|
|
input_length = batch.input_length
|
|
if logits.shape[-2] > 1:
|
|
next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
|
|
batch.input_ids, logits[:, input_length - 1: input_length, :].squeeze(-2)
|
|
)
|
|
else:
|
|
next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
|
|
batch.input_ids, logits.squeeze(-2)
|
|
)
|
|
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
|
batch.top_n_tokens,
|
|
batch.top_n_tokens_tensor,
|
|
logprobs,
|
|
)
|
|
|
|
prev_batches.append({
|
|
'next_token_ids': next_token_ids,
|
|
'next_token_logprobs': next_token_logprobs,
|
|
})
|
|
|
|
for req_idx, req in enumerate(batch.requests):
|
|
requests_to_generate.append({
|
|
'req': req,
|
|
'prev_req_idx': req.idx,
|
|
'batch_id': batch_id,
|
|
'seed': batch.next_token_chooser.seeds[req_idx],
|
|
'do_sample': batch.next_token_chooser.do_sample[req_idx],
|
|
'top_n_tokens': batch.top_n_tokens[req_idx],
|
|
'top_token_ids': batch_top_token_ids[req_idx],
|
|
'top_token_logprobs': batch_top_token_logprobs[req_idx],
|
|
})
|
|
|
|
htorch.core.mark_step()
|
|
|
|
# Add new token into input_ids
|
|
batch.input_ids.index_copy_(1, token_idx, next_token_ids.unsqueeze(1))
|
|
|
|
# Update attention_mask as we added a new token to input_ids
|
|
batch.attention_mask.index_fill_(1, token_idx, 1)
|
|
|
|
# Adjust lengths
|
|
batch.input_length += 1
|
|
|
|
# Update position_ids
|
|
if prefill:
|
|
batch.position_ids = torch.index_select(batch.position_ids, 1, token_idx - 1) + 1
|
|
else:
|
|
batch.position_ids += 1
|
|
# Update past key values
|
|
if prefill:
|
|
batch.past_key_values = past
|
|
|
|
htorch.core.mark_step()
|
|
|
|
# Stage 2. Prepare new batch for speculative scheduling
|
|
if len(batches) > 1:
|
|
batch = self.batch_type.concatenate(batches, self.tokenizer.pad_token_id)
|
|
else:
|
|
batch = batches[0]
|
|
|
|
prefill = batch.past_key_values is None
|
|
|
|
# Check if we need to do any bookkeeping first
|
|
if not prefill:
|
|
batch = batch.__class__.recombine([batch], self.tokenizer.pad_token_id)
|
|
|
|
scenario = 'PREFILL' if prefill else 'GENERATE'
|
|
dbg_trace(
|
|
scenario, f'bs:{batch.batch_size} num_reqs:{len(batch.requests)} seq_len:{batch.seq_length} padding:{batch.right_padding}')
|
|
assert batch.right_padding > 0, 'No more room for next token!'
|
|
|
|
# Execute batch
|
|
if prefill:
|
|
# no right padding for prefill
|
|
token_idx = torch.tensor(batch.attention_mask.shape[-1] - 1).to(self.device)
|
|
batch.logits, batch.past = self.forward(
|
|
batch.input_ids,
|
|
batch.attention_mask,
|
|
batch.position_ids,
|
|
token_idx,
|
|
batch.past_key_values,
|
|
bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
|
|
)
|
|
else:
|
|
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device)
|
|
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
|
|
batch.logits = self.forward(
|
|
input_ids,
|
|
batch.attention_mask,
|
|
batch.position_ids,
|
|
token_idx,
|
|
batch.past_key_values,
|
|
bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
|
|
)
|
|
|
|
htorch.core.mark_step()
|
|
|
|
# Stage 3. Finish and return previous generations
|
|
stopped = len(requests_to_generate) > 0
|
|
for prev_batch in prev_batches:
|
|
prev_batch['next_token_logprobs'] = prev_batch['next_token_logprobs'].tolist()
|
|
prev_batch['next_token_ids_cpu'] = prev_batch['next_token_ids'].cpu()
|
|
htorch.core.mark_step()
|
|
|
|
for req_data in requests_to_generate:
|
|
req = req_data['req']
|
|
i = req_data['prev_req_idx']
|
|
prev_batch_id = req_data['batch_id']
|
|
assert len(prev_batches) > prev_batch_id
|
|
next_token_ids_cpu = prev_batches[prev_batch_id]['next_token_ids_cpu']
|
|
next_token_logprobs = prev_batches[prev_batch_id]['next_token_logprobs']
|
|
|
|
request = req.data
|
|
input_length = req.input_length
|
|
prefix_offset = req.prefix_offset
|
|
read_offset = req.read_offset
|
|
do_sample = req_data['do_sample']
|
|
seed = req_data['seed']
|
|
stopping_criteria = req.stopping_criteria
|
|
all_input_ids = req.all_input_ids
|
|
next_token_id = next_token_ids_cpu[i]
|
|
next_token_logprob = next_token_logprobs[i]
|
|
top_n_tokens = req_data['top_n_tokens']
|
|
top_token_ids = req_data['top_token_ids']
|
|
top_token_logprobs = req_data['top_token_logprobs']
|
|
|
|
# Append next token to all tokens
|
|
all_input_ids[input_length] = next_token_id
|
|
new_input_length = input_length + 1
|
|
|
|
# Generated token
|
|
if is_tokenizer_transparent(self.tokenizer) and len(stopping_criteria.stop_sequence_criterias) == 0:
|
|
next_token_text = ''
|
|
else:
|
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
|
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
|
|
)
|
|
|
|
# Evaluate stopping criteria
|
|
stop, reason = stopping_criteria(
|
|
next_token_id,
|
|
next_token_text,
|
|
)
|
|
|
|
if not stop:
|
|
stopped = False
|
|
|
|
# Shard generations
|
|
# All generations will be appended in the rust sharded client
|
|
if i % self.world_size == self.rank:
|
|
if stop:
|
|
# Decode generated tokens
|
|
if is_tokenizer_transparent(self.tokenizer):
|
|
output_text = None
|
|
else:
|
|
output_text = self.decode(
|
|
all_input_ids[new_input_length - stopping_criteria.current_tokens: new_input_length, 0]
|
|
)
|
|
generated_text = GeneratedText(
|
|
output_text,
|
|
stopping_criteria.current_tokens,
|
|
reason,
|
|
seed if do_sample else None,
|
|
)
|
|
else:
|
|
generated_text = None
|
|
|
|
# Prefill
|
|
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
|
prefill_logprobs = [float("nan")] + next_token_logprobs
|
|
prefill_token_ids = all_input_ids[0: new_input_length - 1]
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
prefill_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts)
|
|
else:
|
|
prefill_tokens = None
|
|
|
|
if top_n_tokens > 0:
|
|
toptoken_texts = self.tokenizer.batch_decode(
|
|
top_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids]
|
|
top_tokens = TopTokens(
|
|
top_token_ids,
|
|
top_token_logprobs,
|
|
toptoken_texts,
|
|
special_toptokens,
|
|
)
|
|
else:
|
|
top_tokens = None
|
|
|
|
generation = Generation(
|
|
request.id,
|
|
prefill_tokens,
|
|
next_token_id,
|
|
next_token_logprob,
|
|
next_token_text,
|
|
next_token_id in self.all_special_ids,
|
|
generated_text,
|
|
top_tokens,
|
|
)
|
|
|
|
generations.append(generation)
|
|
|
|
req.all_input_ids = all_input_ids
|
|
req.input_length = new_input_length
|
|
req.prefix_offset = prefix_offset
|
|
req.read_offset = read_offset
|
|
|
|
htorch.core.mark_step()
|
|
self.step = self.step + 1
|
|
if self.hb_profiler is not None:
|
|
if self.step > self.profiling_wait_steps + self.profiling_warmup_steps + self.profiling_steps:
|
|
self.hb_profiler.stop()
|
|
else:
|
|
self.hb_profiler.step()
|
|
return generations, batch if not stopped else None
|
|
|
|
def warmup(self, batches: List[CausalLMBatch]) -> None:
|
|
# prefill
|
|
_, prefill_batch = self.generate_token([batches.pop(0)])
|
|
# decode
|
|
_, decode_batch = self.generate_token([prefill_batch])
|
|
# shifts
|
|
self.shifting_warmup(decode_batch)
|
|
|
|
# if decode bs is 1 warmup ends here
|
|
if len(batches) == 0:
|
|
return
|
|
|
|
# prefill
|
|
_, prefill_batch = self.generate_token([batches.pop(0)])
|
|
# concatenate and decode
|
|
_, decode_batch = self.generate_token([decode_batch, prefill_batch])
|
|
# decodes
|
|
while decode_batch is not None:
|
|
_, decode_batch = self.generate_token([decode_batch])
|
|
|
|
def shifting_warmup(self, batch: CausalLMBatch) -> None:
|
|
chunk_sizes = CHUNK_SIZES.copy()
|
|
chunk_sizes.extend([-chunk for chunk in chunk_sizes])
|
|
|
|
for chunk in chunk_sizes:
|
|
batch.merge_kv_cache_if_needed(batch.batch_size, chunk)
|
|
batch.realign(batch.batch_size, chunk, 0)
|
|
batch.split_kv_cache_if_needed(True)
|