mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 22:32:07 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Joshua Rosenkranz <joshua.rosenkranz@gmail.com>
785 lines
29 KiB
Python
785 lines
29 KiB
Python
import torch
|
|
import time
|
|
|
|
from dataclasses import dataclass
|
|
from opentelemetry import trace
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
|
|
from typing import Optional, Tuple, List, Type, Dict
|
|
|
|
from text_generation_server.models import Model
|
|
from text_generation_server.utils.tokens import batch_top_tokens
|
|
from text_generation_server.models.types import (
|
|
Batch,
|
|
Tokens,
|
|
Generation,
|
|
GeneratedText,
|
|
)
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
@dataclass
|
|
class CausalLMBatch(Batch):
|
|
batch_id: int
|
|
requests: List[generate_pb2.Request]
|
|
requests_idx_mapping: Dict[int, int]
|
|
|
|
# Decoder values
|
|
input_ids: torch.Tensor
|
|
attention_mask: torch.Tensor
|
|
position_ids: torch.Tensor
|
|
past_key_values: Optional[List[Tuple]]
|
|
|
|
# All tokens
|
|
all_input_ids: List[torch.Tensor]
|
|
|
|
# Lengths of all generations present in the batch
|
|
input_lengths: List[int]
|
|
prefix_offsets: List[int]
|
|
read_offsets: List[int]
|
|
|
|
# Generation helpers
|
|
next_token_choosers: List[NextTokenChooser]
|
|
stopping_criterias: List[StoppingCriteria]
|
|
top_n_tokens: List[int]
|
|
top_n_tokens_tensor: torch.Tensor
|
|
|
|
# Metadata used for padding
|
|
max_input_length: int
|
|
padding_right_offset: int
|
|
|
|
# Maximum number of tokens this batch will grow to
|
|
max_tokens: int
|
|
|
|
# Past metadata
|
|
keys_head_dim_last: bool = True
|
|
|
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
|
return generate_pb2.CachedBatch(
|
|
id=self.batch_id,
|
|
request_ids=[r.id for r in self.requests],
|
|
size=len(self),
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "CausalLMBatch":
|
|
inputs = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
requests_idx_mapping = {}
|
|
|
|
# Parse batch
|
|
max_truncation = 0
|
|
padding_right_offset = 0
|
|
max_decode_tokens = 0
|
|
for i, r in enumerate(pb.requests):
|
|
requests_idx_mapping[r.id] = i
|
|
inputs.append(r.inputs)
|
|
next_token_choosers.append(
|
|
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
|
|
)
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
r.stopping_parameters, tokenizer
|
|
)
|
|
stopping_criterias.append(stopping_criteria)
|
|
top_n_tokens.append(r.top_n_tokens)
|
|
max_truncation = max(max_truncation, r.truncate)
|
|
max_decode_tokens += stopping_criteria.max_new_tokens
|
|
padding_right_offset = max(
|
|
padding_right_offset, stopping_criteria.max_new_tokens
|
|
)
|
|
|
|
tokenized_inputs = tokenizer(
|
|
inputs,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
return_token_type_ids=False,
|
|
truncation=True,
|
|
max_length=max_truncation,
|
|
).to(device)
|
|
for _ in pb.requests:
|
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
|
prefix_offsets.append(input_len - 5)
|
|
read_offsets.append(input_len)
|
|
|
|
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
|
max_input_length = input_lengths.max()
|
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
|
# Allocate maximum attention_mask
|
|
attention_mask = input_ids.new_zeros(
|
|
(pb.size, max_input_length + padding_right_offset)
|
|
)
|
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
|
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
|
|
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
|
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
|
top_n_tokens_tensor = torch.tensor(
|
|
top_n_tokens, device=device, dtype=torch.int64
|
|
)
|
|
|
|
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
|
|
|
return cls(
|
|
batch_id=pb.id,
|
|
requests=pb.requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=None,
|
|
all_input_ids=list(all_input_ids),
|
|
input_lengths=input_lengths.tolist(),
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
max_input_length=max_input_length.item(),
|
|
padding_right_offset=padding_right_offset,
|
|
max_tokens=max_tokens,
|
|
)
|
|
|
|
@tracer.start_as_current_span("filter")
|
|
def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
|
|
if len(request_ids) == 0:
|
|
raise ValueError("Batch must have at least one request")
|
|
if len(request_ids) == len(self):
|
|
return self
|
|
|
|
keep_indices = []
|
|
|
|
# New values after filtering
|
|
requests_idx_mapping = {}
|
|
requests = []
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
all_input_ids = []
|
|
max_input_length = 0
|
|
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
|
|
total_remaining_decode_tokens = 0
|
|
new_padding_right_offset = 0
|
|
|
|
for i, request_id in enumerate(request_ids):
|
|
idx = self.requests_idx_mapping[request_id]
|
|
requests_idx_mapping[request_id] = i
|
|
keep_indices.append(idx)
|
|
|
|
requests.append(self.requests[idx])
|
|
prefix_offsets.append(self.prefix_offsets[idx])
|
|
read_offsets.append(self.read_offsets[idx])
|
|
all_input_ids.append(self.all_input_ids[idx])
|
|
|
|
request_input_length = self.input_lengths[idx]
|
|
input_lengths.append(request_input_length)
|
|
max_input_length = max(max_input_length, request_input_length)
|
|
|
|
next_token_choosers.append(self.next_token_choosers[idx])
|
|
stopping_criteria = self.stopping_criterias[idx]
|
|
stopping_criterias.append(stopping_criteria)
|
|
top_n_tokens.append(self.top_n_tokens[idx])
|
|
remaining_decode_tokens = (
|
|
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
|
)
|
|
total_remaining_decode_tokens += remaining_decode_tokens
|
|
new_padding_right_offset = max(
|
|
new_padding_right_offset, remaining_decode_tokens
|
|
)
|
|
|
|
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
|
input_ids = self.input_ids[keep_indices]
|
|
position_ids = self.position_ids[keep_indices]
|
|
self.attention_mask = self.attention_mask[
|
|
keep_indices,
|
|
-(self.padding_right_offset + max_input_length) : (
|
|
self.attention_mask.shape[1] - self.padding_right_offset
|
|
)
|
|
+ new_padding_right_offset,
|
|
]
|
|
|
|
# Ensure that past_key_values tensors can be updated in-place
|
|
if type(self.past_key_values[0]) == tuple:
|
|
self.past_key_values = [list(layer) for layer in self.past_key_values]
|
|
|
|
# Update tensors in-place to allow incremental garbage collection
|
|
past_kv_length = max_input_length - 1
|
|
for layer in self.past_key_values:
|
|
past_keys, past_values = layer
|
|
if len(past_keys.shape) == 3:
|
|
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
|
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
|
|
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
|
|
if self.keys_head_dim_last:
|
|
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
|
|
else:
|
|
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
|
|
del past_keys
|
|
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
|
|
del past_values
|
|
|
|
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
|
|
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
|
|
|
|
self.requests = requests
|
|
self.requests_idx_mapping = requests_idx_mapping
|
|
self.input_ids = input_ids
|
|
self.position_ids = position_ids
|
|
self.all_input_ids = all_input_ids
|
|
self.input_lengths = input_lengths
|
|
self.prefix_offsets = prefix_offsets
|
|
self.read_offsets = read_offsets
|
|
self.next_token_choosers = next_token_choosers
|
|
self.stopping_criterias = stopping_criterias
|
|
self.top_n_tokens = top_n_tokens
|
|
self.top_n_tokens_tensor = top_n_tokens_tensor
|
|
self.max_input_length = max_input_length
|
|
self.padding_right_offset = new_padding_right_offset
|
|
self.max_tokens = max_tokens
|
|
|
|
return self
|
|
|
|
@classmethod
|
|
@tracer.start_as_current_span("concatenate")
|
|
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
|
# Used for padding
|
|
total_batch_size = 0
|
|
max_input_length = 0
|
|
padding_right_offset = 0
|
|
for batch in batches:
|
|
total_batch_size += len(batch)
|
|
max_input_length = max(max_input_length, batch.max_input_length)
|
|
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
|
|
|
# Batch attributes
|
|
requests = []
|
|
requests_idx_mapping = {}
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
all_input_ids = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
max_tokens = 0
|
|
|
|
# Batch tensors
|
|
input_ids = None
|
|
attention_mask = None
|
|
position_ids = None
|
|
past_key_values = []
|
|
top_n_tokens_tensor = None
|
|
|
|
# Used for slicing correctly inside the tensors
|
|
# Equivalent to a cumsum on batch sizes
|
|
start_index = 0
|
|
for i, batch in enumerate(batches):
|
|
requests.extend(batch.requests)
|
|
input_lengths.extend(batch.input_lengths)
|
|
prefix_offsets.extend(batch.prefix_offsets)
|
|
read_offsets.extend(batch.read_offsets)
|
|
all_input_ids.extend(batch.all_input_ids)
|
|
next_token_choosers.extend(batch.next_token_choosers)
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
|
top_n_tokens.extend(batch.top_n_tokens)
|
|
|
|
if i == 0:
|
|
requests_idx_mapping = batch.requests_idx_mapping
|
|
else:
|
|
# We need to offset the mapping for each batch by the cumulative batch size
|
|
for k, v in batch.requests_idx_mapping.items():
|
|
requests_idx_mapping[k] = v + start_index
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
|
|
# We only concatenate batches that did at least one step
|
|
if batch.past_key_values is None:
|
|
raise ValueError("only concatenate prefilled batches")
|
|
|
|
# Create empty tensor
|
|
# input_ids is always of shape [batch_size, 1]
|
|
# We do not need to pad it
|
|
if input_ids is None:
|
|
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
|
|
# Copy to correct indices
|
|
input_ids[start_index:end_index] = batch.input_ids
|
|
|
|
# Create padded tensor
|
|
if attention_mask is None:
|
|
attention_mask = batch.attention_mask.new_zeros(
|
|
(total_batch_size, max_input_length + padding_right_offset),
|
|
)
|
|
|
|
if top_n_tokens_tensor is None:
|
|
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
|
|
total_batch_size,
|
|
)
|
|
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
|
|
|
|
# We need to slice the attention mask to remove padding from previous steps
|
|
# and to remove unused allocated space
|
|
left_offset = max_input_length - batch.max_input_length
|
|
batch_left_offset = (
|
|
batch.attention_mask.shape[1]
|
|
- batch.max_input_length
|
|
- batch.padding_right_offset
|
|
)
|
|
attention_mask[
|
|
start_index:end_index,
|
|
left_offset:-padding_right_offset,
|
|
] = batch.attention_mask[
|
|
:,
|
|
batch_left_offset : -batch.padding_right_offset,
|
|
]
|
|
|
|
# Create empty tensor
|
|
# position_ids is always of shape [batch_size, 1]
|
|
if position_ids is None:
|
|
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
|
|
position_ids[start_index:end_index] = batch.position_ids
|
|
|
|
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
|
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
|
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
|
# And ensure that we can update tensors in-place
|
|
if type(batch.past_key_values[0]) == tuple:
|
|
batch.past_key_values = [
|
|
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
|
|
for layer in batch.past_key_values
|
|
]
|
|
elif len(batch.past_key_values[0][0].shape) == 3:
|
|
for layer in batch.past_key_values:
|
|
for k, t in enumerate(layer):
|
|
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
|
|
|
|
# Add eventual padding tokens that were added while concatenating
|
|
max_tokens += batch.max_tokens + (
|
|
max_input_length - batch.max_input_length
|
|
) * len(batch)
|
|
|
|
start_index = end_index
|
|
|
|
first_past_kvs = batches[0].past_key_values
|
|
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
|
|
|
|
padded_past_values_shape = (
|
|
total_batch_size,
|
|
num_heads,
|
|
max_input_length - 1,
|
|
head_dim,
|
|
)
|
|
|
|
if batches[0].keys_head_dim_last:
|
|
padded_past_keys_shape = padded_past_values_shape
|
|
else:
|
|
# seq_length is last for BLOOM
|
|
padded_past_keys_shape = (
|
|
total_batch_size,
|
|
num_heads,
|
|
head_dim,
|
|
max_input_length - 1,
|
|
)
|
|
|
|
# Iterate over attention layers
|
|
# Concatenate past key values layer by layer to allow incremental garbage collection
|
|
for j in range(len(first_past_kvs)):
|
|
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
|
|
start_index = 0
|
|
for batch in batches:
|
|
past_keys = batch.past_key_values[j][0]
|
|
# Clear reference to the original tensor
|
|
batch.past_key_values[j][0] = None
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
# We slice the keys to remove the padding from previous batches
|
|
past_seq_len = batch.max_input_length - 1
|
|
if batch.keys_head_dim_last:
|
|
padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
|
|
past_keys[:, :, -past_seq_len:, :]
|
|
)
|
|
else:
|
|
# BLOOM case
|
|
padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
|
|
past_keys[:, :, :, -past_seq_len:]
|
|
)
|
|
del past_keys
|
|
|
|
start_index = end_index
|
|
|
|
padded_past_values = first_past_kvs[j][1].new_zeros(
|
|
padded_past_values_shape
|
|
)
|
|
start_index = 0
|
|
for batch in batches:
|
|
past_values = batch.past_key_values[j][1]
|
|
# Clear reference to the original tensor
|
|
batch.past_key_values[j][1] = None
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
# We slice the past values to remove the padding from previous batches
|
|
past_seq_len = batch.max_input_length - 1
|
|
padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
|
|
past_values[:, :, -past_seq_len:, :]
|
|
)
|
|
del past_values
|
|
|
|
# Update values
|
|
start_index = end_index
|
|
|
|
past_key_values.append([padded_past_keys, padded_past_values])
|
|
|
|
return cls(
|
|
batch_id=batches[0].batch_id,
|
|
requests=requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
all_input_ids=all_input_ids,
|
|
input_lengths=input_lengths,
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
max_input_length=max_input_length,
|
|
padding_right_offset=padding_right_offset,
|
|
keys_head_dim_last=batches[0].keys_head_dim_last,
|
|
max_tokens=max_tokens,
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.requests)
|
|
|
|
|
|
class CausalLM(Model):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
):
|
|
if speculator:
|
|
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
|
|
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda")
|
|
dtype = torch.float16 if dtype is None else dtype
|
|
else:
|
|
if quantize:
|
|
raise ValueError("quantization is not available on CPU")
|
|
|
|
device = torch.device("cpu")
|
|
dtype = torch.float32 if dtype is None else dtype
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
torch_dtype=dtype,
|
|
device_map=(
|
|
"auto"
|
|
if torch.cuda.is_available() and torch.cuda.device_count() > 1
|
|
else None
|
|
),
|
|
load_in_8bit=quantize == "bitsandbytes",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
if (
|
|
torch.cuda.is_available()
|
|
and torch.cuda.device_count() == 1
|
|
and quantize != "bitsandbytes"
|
|
):
|
|
model = model.cuda()
|
|
|
|
if tokenizer.pad_token_id is None:
|
|
if model.config.pad_token_id is not None:
|
|
tokenizer.pad_token_id = model.config.pad_token_id
|
|
elif model.config.eos_token_id is not None:
|
|
tokenizer.pad_token_id = model.config.eos_token_id
|
|
elif tokenizer.eos_token_id is not None:
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
else:
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
|
|
super(CausalLM, self).__init__(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
requires_padding=True,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
|
|
@property
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
return CausalLMBatch
|
|
|
|
def decode(self, generated_ids: List[int]) -> str:
|
|
return self.tokenizer.decode(
|
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
)
|
|
|
|
def forward(
|
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
|
) -> Tuple[
|
|
torch.Tensor, Optional[torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]
|
|
]:
|
|
# Model Forward
|
|
kwargs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": True,
|
|
"return_dict": True,
|
|
}
|
|
if self.has_position_ids:
|
|
kwargs["position_ids"] = position_ids
|
|
|
|
outputs = self.model.forward(**kwargs)
|
|
if isinstance(outputs, tuple):
|
|
outputs, speculative_logits = outputs
|
|
else:
|
|
speculative_logits = None
|
|
return outputs.logits, speculative_logits, outputs.past_key_values
|
|
|
|
@tracer.start_as_current_span("generate_token")
|
|
def generate_token(
|
|
self, batch: CausalLMBatch
|
|
) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]:
|
|
start = time.time_ns()
|
|
# slice the attention mask to the correct shape
|
|
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
|
|
|
logits, speculative_logits, past = self.forward(
|
|
batch.input_ids,
|
|
attention_mask,
|
|
batch.position_ids,
|
|
batch.past_key_values,
|
|
)
|
|
|
|
# Results
|
|
generations: List[Generation] = []
|
|
stopped = True
|
|
|
|
# Speculation is not active for causal
|
|
accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
|
|
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
|
batch.top_n_tokens,
|
|
batch.top_n_tokens_tensor,
|
|
torch.log_softmax(logits[:, -1], -1),
|
|
accepted_ids,
|
|
)
|
|
|
|
start_decode = time.time_ns()
|
|
|
|
# Zipped iterator
|
|
iterator = zip(
|
|
batch.requests,
|
|
batch.input_lengths,
|
|
batch.prefix_offsets,
|
|
batch.read_offsets,
|
|
logits,
|
|
batch.next_token_choosers,
|
|
batch.stopping_criterias,
|
|
batch.all_input_ids,
|
|
batch.top_n_tokens,
|
|
batch_top_token_ids,
|
|
batch_top_token_logprobs,
|
|
)
|
|
|
|
# For each member of the batch
|
|
for i, (
|
|
request,
|
|
input_length,
|
|
prefix_offset,
|
|
read_offset,
|
|
logits,
|
|
next_token_chooser,
|
|
stopping_criteria,
|
|
all_input_ids,
|
|
top_n_tokens,
|
|
top_token_ids,
|
|
top_token_logprobs,
|
|
) in enumerate(iterator):
|
|
# Select next token
|
|
next_token_id, logprobs = next_token_chooser(
|
|
all_input_ids.view(1, -1), logits[-1:, :]
|
|
)
|
|
|
|
# Append next token to all tokens
|
|
all_input_ids = torch.cat([all_input_ids, next_token_id])
|
|
new_input_length = input_length + 1
|
|
|
|
# Generated token
|
|
next_token_logprob = logprobs[-1, next_token_id]
|
|
next_token_id_squeezed = next_token_id.squeeze()
|
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
|
all_input_ids[:, 0], prefix_offset, read_offset
|
|
)
|
|
|
|
# Evaluate stopping criteria
|
|
stop, reason = stopping_criteria(
|
|
next_token_id_squeezed,
|
|
next_token_text,
|
|
)
|
|
|
|
if not stop:
|
|
stopped = False
|
|
|
|
# Shard generations
|
|
# All generations will be appended in the rust sharded client
|
|
if i % self.world_size == self.rank:
|
|
if stop:
|
|
# Decode generated tokens
|
|
output_text, _, _ = self.decode_token(
|
|
all_input_ids[:, 0],
|
|
prefix_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens
|
|
- 1,
|
|
read_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens,
|
|
skip_special_tokens=True,
|
|
)
|
|
# Get seed
|
|
if isinstance(next_token_chooser.choice, Sampling):
|
|
seed = next_token_chooser.choice.seed
|
|
else:
|
|
seed = None
|
|
|
|
generated_text = GeneratedText(
|
|
output_text, stopping_criteria.current_tokens, reason, seed
|
|
)
|
|
else:
|
|
generated_text = None
|
|
|
|
# Prefill
|
|
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
|
prefill_logprobs = [float("nan")] + torch.log_softmax(
|
|
logits, -1
|
|
).gather(1, all_input_ids[1:]).squeeze(1)[
|
|
-new_input_length:-1
|
|
].tolist()
|
|
prefill_token_ids = all_input_ids[-new_input_length:-1]
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
prefill_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
prefill_tokens = Tokens(
|
|
prefill_token_ids,
|
|
prefill_logprobs,
|
|
prefill_texts,
|
|
is_special=[],
|
|
)
|
|
else:
|
|
prefill_tokens = None
|
|
|
|
if top_n_tokens > 0:
|
|
all_top_tokens = []
|
|
for top_token_ids, top_token_logprobs in zip(
|
|
top_token_ids, top_token_logprobs
|
|
):
|
|
toptoken_texts = self.tokenizer.batch_decode(
|
|
top_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
special_toptokens = [
|
|
token_id in self.all_special_ids
|
|
for token_id in top_token_ids
|
|
]
|
|
top_tokens = Tokens(
|
|
top_token_ids,
|
|
top_token_logprobs,
|
|
toptoken_texts,
|
|
special_toptokens,
|
|
)
|
|
all_top_tokens.append(top_tokens)
|
|
top_tokens = all_top_tokens
|
|
else:
|
|
top_tokens = None
|
|
|
|
generation = Generation(
|
|
request.id,
|
|
prefill_tokens,
|
|
Tokens(
|
|
[next_token_id_squeezed],
|
|
[next_token_logprob],
|
|
[next_token_text],
|
|
[next_token_id_squeezed.item() in self.all_special_ids],
|
|
),
|
|
generated_text,
|
|
top_tokens,
|
|
)
|
|
|
|
generations.append(generation)
|
|
|
|
# Update values
|
|
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
|
|
next_token_id_squeezed.item()
|
|
)
|
|
batch.input_ids[i, 0] = next_token_id
|
|
batch.all_input_ids[i] = all_input_ids
|
|
batch.input_lengths[i] = new_input_length
|
|
batch.prefix_offsets[i] = prefix_offset
|
|
batch.read_offsets[i] = read_offset
|
|
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
|
|
|
# We finished all generations in the batch; there is no next batch
|
|
if stopped:
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, None, (forward_ns, decode_ns)
|
|
|
|
# Slice unused values from prefill
|
|
batch.input_ids = batch.input_ids[:, :1]
|
|
|
|
# Update attention_mask as we added a new token to input_ids
|
|
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
|
# Decrease right offset
|
|
batch.padding_right_offset -= 1
|
|
|
|
# Update position_ids
|
|
batch.position_ids = batch.position_ids[:, -1:] + 1
|
|
|
|
# Update past key values
|
|
batch.past_key_values = past
|
|
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, batch, (forward_ns, decode_ns)
|