mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 14:22:08 +00:00
289 lines
12 KiB
Python
289 lines
12 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
|
from transformers.models.llama.modeling_llama import LlamaMLP
|
|
|
|
try:
|
|
import triton
|
|
import triton.language as tl
|
|
from . import custom_autotune
|
|
|
|
# code based https://github.com/fpgaminer/GPTQ-triton
|
|
@custom_autotune.autotune(
|
|
configs=[
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 256,
|
|
'BLOCK_SIZE_N': 64,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4),
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 64,
|
|
'BLOCK_SIZE_N': 256,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4),
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 128,
|
|
'BLOCK_SIZE_N': 128,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4),
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 128,
|
|
'BLOCK_SIZE_N': 64,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4),
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 64,
|
|
'BLOCK_SIZE_N': 128,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4),
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 128,
|
|
'BLOCK_SIZE_N': 32,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4), # 3090
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 128,
|
|
'BLOCK_SIZE_N': 16,
|
|
'BLOCK_SIZE_K': 32,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4), # 3090
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 32,
|
|
'BLOCK_SIZE_N': 32,
|
|
'BLOCK_SIZE_K': 128,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=2, num_warps=4), # 3090
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 64,
|
|
'BLOCK_SIZE_N': 16,
|
|
'BLOCK_SIZE_K': 64,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4), # 3090
|
|
triton.Config({
|
|
'BLOCK_SIZE_M': 64,
|
|
'BLOCK_SIZE_N': 32,
|
|
'BLOCK_SIZE_K': 64,
|
|
'GROUP_SIZE_M': 8
|
|
}, num_stages=4, num_warps=4), # 3090
|
|
],
|
|
key=['M', 'N', 'K'],
|
|
nearest_power_of_two=True,
|
|
prune_configs_by={
|
|
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
|
|
'perf_model': None,
|
|
'top_k': None,
|
|
},
|
|
)
|
|
@triton.jit
|
|
def fusedmatmul_248_kernel(a_ptr, c_ptr, b1_ptr, scales1_ptr, zeros1_ptr, g1_ptr, b2_ptr, scales2_ptr, zeros2_ptr, g2_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn,
|
|
stride_cm, stride_cn, stride_scales, stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
|
"""
|
|
Computes: C = silu(A * B1) * (A * B2)
|
|
A is of shape (M, K) float16
|
|
B is of shape (K//8, N) int32
|
|
C is of shape (M, N) float16
|
|
scales is of shape (1, N) float16
|
|
zeros is of shape (1, N//8) int32
|
|
"""
|
|
infearure_per_bits = 32 // bits
|
|
|
|
pid = tl.program_id(axis=0)
|
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
|
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
|
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
|
group_id = pid // num_pid_in_group
|
|
first_pid_m = group_id * GROUP_SIZE_M
|
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
|
pid_m = first_pid_m + (pid % group_size_m)
|
|
pid_n = (pid % num_pid_in_group) // group_size_m
|
|
|
|
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
|
a_mask = (offs_am[:, None] < M)
|
|
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
|
b1_ptrs = b1_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
|
b2_ptrs = b2_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
|
|
g1_ptrs = g1_ptr + offs_k
|
|
g2_ptrs = g2_ptr + offs_k
|
|
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
|
scales1_ptrs = scales1_ptr + offs_bn[None, :]
|
|
scales2_ptrs = scales2_ptr + offs_bn[None, :]
|
|
zeros1_ptrs = zeros1_ptr + (offs_bn[None, :] // infearure_per_bits)
|
|
zeros2_ptrs = zeros2_ptr + (offs_bn[None, :] // infearure_per_bits)
|
|
|
|
shifter = (offs_k % infearure_per_bits) * bits
|
|
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
|
accumulator1 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
accumulator2 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
for k in range(0, num_pid_k):
|
|
g1_idx = tl.load(g1_ptrs)
|
|
g2_idx = tl.load(g2_ptrs)
|
|
|
|
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
|
scales1 = tl.load(scales1_ptrs + g1_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
|
scales2 = tl.load(scales2_ptrs + g2_idx[:, None] * stride_scales)
|
|
|
|
zeros1 = tl.load(zeros1_ptrs + g1_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
|
zeros1 = (zeros1 >> zeros_shifter[None, :]) & maxq
|
|
zeros1 = (zeros1 + 1)
|
|
|
|
zeros2 = tl.load(zeros2_ptrs + g2_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
|
zeros2 = (zeros2 >> zeros_shifter[None, :]) & maxq
|
|
zeros2 = (zeros2 + 1)
|
|
|
|
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
|
b1 = tl.load(b1_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
|
b2 = tl.load(b2_ptrs)
|
|
|
|
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
|
b1 = (b1 >> shifter[:, None]) & maxq # Extract the N-bit values
|
|
b1 = (b1 - zeros1) * scales1 # Scale and shift
|
|
accumulator1 += tl.dot(a, b1)
|
|
|
|
b2 = (b2 >> shifter[:, None]) & maxq
|
|
b2 = (b2 - zeros2) * scales2
|
|
accumulator2 += tl.dot(a, b2)
|
|
|
|
a_ptrs += BLOCK_SIZE_K
|
|
b1_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
|
b2_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
|
g1_ptrs += BLOCK_SIZE_K
|
|
g2_ptrs += BLOCK_SIZE_K
|
|
|
|
accumulator1 = silu(accumulator1)
|
|
c = accumulator1 * accumulator2
|
|
c = c.to(tl.float16)
|
|
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
|
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
|
tl.store(c_ptrs, c, mask=c_mask)
|
|
|
|
@triton.jit
|
|
def silu(x):
|
|
return x * tl.sigmoid(x)
|
|
except:
|
|
print('triton not installed.')
|
|
|
|
|
|
class QuantLlamaMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
gate_proj,
|
|
down_proj,
|
|
up_proj,
|
|
):
|
|
super().__init__()
|
|
self.register_buffer('gate_proj_qweight', gate_proj.qweight)
|
|
self.register_buffer('gate_proj_scales', gate_proj.scales)
|
|
self.register_buffer('gate_proj_qzeros', gate_proj.qzeros)
|
|
self.register_buffer('gate_proj_g_idx', gate_proj.g_idx)
|
|
self.register_buffer('up_proj_qweight', up_proj.qweight)
|
|
self.register_buffer('up_proj_scales', up_proj.scales)
|
|
self.register_buffer('up_proj_qzeros', up_proj.qzeros)
|
|
self.register_buffer('up_proj_g_idx', up_proj.g_idx)
|
|
|
|
self.infeatures = gate_proj.infeatures
|
|
self.intermediate_size = gate_proj.outfeatures
|
|
self.outfeatures = down_proj.outfeatures
|
|
self.bits = gate_proj.bits
|
|
self.maxq = gate_proj.maxq
|
|
|
|
self.down_proj = down_proj
|
|
|
|
def forward(self, x):
|
|
return self.down_proj(self.triton_llama_mlp(x))
|
|
|
|
def triton_llama_mlp(self, x):
|
|
with torch.cuda.device(x.device):
|
|
out_shape = x.shape[:-1] + (self.intermediate_size, )
|
|
x = x.reshape(-1, x.shape[-1])
|
|
M, K = x.shape
|
|
N = self.intermediate_size
|
|
c = torch.empty((M, N), device=x.device, dtype=torch.float16)
|
|
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
|
|
fusedmatmul_248_kernel[grid](x, c, self.gate_proj_qweight, self.gate_proj_scales, self.gate_proj_qzeros, self.gate_proj_g_idx, self.up_proj_qweight, self.up_proj_scales,
|
|
self.up_proj_qzeros, self.up_proj_g_idx, M, N, K, self.bits, self.maxq, x.stride(0), x.stride(1), self.gate_proj_qweight.stride(0),
|
|
self.gate_proj_qweight.stride(1), c.stride(0), c.stride(1), self.gate_proj_scales.stride(0), self.gate_proj_qzeros.stride(0))
|
|
c = c.reshape(out_shape)
|
|
return c
|
|
|
|
def fused2cuda(self):
|
|
self.gate_proj_qweight = self.gate_proj_qweight.cuda()
|
|
self.gate_proj_scales = self.gate_proj_scales.cuda()
|
|
self.gate_proj_qzeros = self.gate_proj_qzeros.cuda()
|
|
self.gate_proj_g_idx = self.gate_proj_g_idx.cuda()
|
|
self.up_proj_qweight = self.up_proj_qweight.cuda()
|
|
self.up_proj_scales = self.up_proj_scales.cuda()
|
|
self.up_proj_qzeros = self.up_proj_qzeros.cuda()
|
|
self.up_proj_g_idx = self.up_proj_g_idx.cuda()
|
|
|
|
def fused2cpu(self):
|
|
self.gate_proj_qweight = self.gate_proj_qweight.cpu()
|
|
self.gate_proj_scales = self.gate_proj_scales.cpu()
|
|
self.gate_proj_qzeros = self.gate_proj_qzeros.cpu()
|
|
self.gate_proj_g_idx = self.gate_proj_g_idx.cpu()
|
|
self.up_proj_qweight = self.up_proj_qweight.cpu()
|
|
self.up_proj_scales = self.up_proj_scales.cpu()
|
|
self.up_proj_qzeros = self.up_proj_qzeros.cpu()
|
|
self.up_proj_g_idx = self.up_proj_g_idx.cpu()
|
|
|
|
|
|
def make_fused_mlp(m, parent_name=''):
|
|
"""
|
|
Replace all LlamaMLP modules with QuantLlamaMLP modules, which fuses many of the operations.
|
|
"""
|
|
if isinstance(m, LlamaMLP):
|
|
return QuantLlamaMLP(m.gate_proj, m.down_proj, m.up_proj)
|
|
|
|
for name, child in m.named_children():
|
|
child = make_fused_mlp(child, parent_name=f"{parent_name}.{name}")
|
|
|
|
if isinstance(child, QuantLlamaMLP):
|
|
setattr(m, name, child)
|
|
return m
|
|
|
|
|
|
def autotune_warmup_fused(model):
|
|
"""
|
|
Pre-tunes the quantized kernel
|
|
"""
|
|
from tqdm import tqdm
|
|
|
|
kn_values = {}
|
|
|
|
for _, m in model.named_modules():
|
|
if not isinstance(m, QuantLlamaMLP):
|
|
continue
|
|
|
|
k = m.infeatures
|
|
n = m.intermediate_size
|
|
|
|
m.fused2cuda()
|
|
if (k, n) not in kn_values:
|
|
kn_values[(k, n)] = m
|
|
|
|
print(f'Found {len(kn_values)} unique fused mlp KN values.')
|
|
|
|
print('Warming up autotune cache ...')
|
|
with torch.no_grad():
|
|
for m in tqdm(range(0, 12)):
|
|
m = 2**m # [1, 2048]
|
|
for (k, n), (modules) in kn_values.items():
|
|
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
|
|
modules.triton_llama_mlp(a)
|
|
|
|
for (k, n), (modules) in kn_values.items():
|
|
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
|
|
modules.fused2cpu()
|
|
del kn_values
|