mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 13:52:07 +00:00
compressed-tensors is a safetensors extension for sparse, quantized tensors. The format is more powerful than earlier AWQ/GPTQ/FP8 quantization, because - Different quantizer configurations can be used for different targets. - The format can specify input/output quantizers in addition to weight quantizers. - Configurable exclusions for quantization. This change adds a dependency on the `compressed-tensors` package for its configuration parsing and layer matching functionality. The following types of quantization are supported in this PR: - W8A16 and W4A16 INT using GPTQ-Marlin kernels. - W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels. Support for other quantization types will be added in subsequent PRs.
87 lines
2.3 KiB
Python
87 lines
2.3 KiB
Python
import pytest
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def compressed_tensors_wna16_handle(launcher):
|
|
with launcher(
|
|
"neuralmagic/gemma-2-2b-it-quantized.w4a16",
|
|
num_shard=2,
|
|
quantize="compressed-tensors",
|
|
) as handle:
|
|
yield handle
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
async def compressed_tensors_wna16(compressed_tensors_wna16_handle):
|
|
await compressed_tensors_wna16_handle.health(300)
|
|
return compressed_tensors_wna16_handle.client
|
|
|
|
|
|
@pytest.mark.release
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.private
|
|
async def test_compressed_tensors_wna16(compressed_tensors_wna16, response_snapshot):
|
|
response = await compressed_tensors_wna16.generate(
|
|
"What is deep learning?",
|
|
max_new_tokens=10,
|
|
decoder_input_details=True,
|
|
)
|
|
|
|
assert (
|
|
response.generated_text
|
|
== "\n\nDeep learning is a subset of machine learning that"
|
|
)
|
|
assert response.details.generated_tokens == 10
|
|
assert response == response_snapshot
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_compressed_tensors_wna16_all_params(
|
|
compressed_tensors_wna16, response_snapshot
|
|
):
|
|
response = await compressed_tensors_wna16.generate(
|
|
"What is deep learning",
|
|
max_new_tokens=10,
|
|
repetition_penalty=1.2,
|
|
return_full_text=True,
|
|
stop_sequences=["test"],
|
|
temperature=0.5,
|
|
top_p=0.9,
|
|
top_k=10,
|
|
truncate=5,
|
|
typical_p=0.9,
|
|
watermark=True,
|
|
decoder_input_details=True,
|
|
seed=0,
|
|
)
|
|
|
|
assert response.details.generated_tokens == 10
|
|
assert (
|
|
response.generated_text
|
|
== "What is deep learning?\n\nDeep Learning is a subset of machine learning"
|
|
)
|
|
assert response == response_snapshot
|
|
|
|
|
|
@pytest.mark.release
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.private
|
|
async def test_compressed_tensors_wna16_load(
|
|
compressed_tensors_wna16, generate_load, response_snapshot
|
|
):
|
|
responses = await generate_load(
|
|
compressed_tensors_wna16,
|
|
"What is deep learning?",
|
|
max_new_tokens=10,
|
|
n=4,
|
|
)
|
|
|
|
assert (
|
|
responses[0].generated_text
|
|
== "\n\nDeep learning is a subset of machine learning that"
|
|
)
|
|
assert len(responses) == 4
|
|
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
|
|
|
assert responses == response_snapshot
|