text-generation-inference/server/text_generation_server/models/gpt_neox.py
Daniël de Kok 093a27c528
Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-06-14 09:45:42 +02:00

89 lines
2.7 KiB
Python

import torch
import torch.distributed
from typing import Optional
from transformers import (
AutoTokenizer,
AutoConfig,
)
from text_generation_server.models import CausalLM
from text_generation_server.models.custom_modeling.neox_modeling import (
GPTNeoxForCausalLM,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
class GPTNeoxSharded(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.speculator = speculator
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames, device=device, dtype=dtype, process_group=self.process_group
)
if config.quantize in ["gptq", "marlin"]:
weights._set_gptq_params(model_id, revision)
model = GPTNeoxForCausalLM(config, weights)
torch.distributed.barrier(group=self.process_group)
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
outputs, speculative_logits = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, speculative_logits, outputs.past_key_values