mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 00:12:08 +00:00
Add support for GPTQ Marlin kernels GPTQ Marlin extends the Marlin kernels to support common GPTQ configurations: - bits: 4 or 8 - groupsize: -1, 32, 64, or 128 - desc_act: true/false Using the GPTQ Marlin kernels requires repacking the parameters in the Marlin quantizer format. The kernels were contributed by Neural Magic to VLLM. We vendor them here for convenience.
1137 lines
44 KiB
Plaintext
1137 lines
44 KiB
Plaintext
/*
|
|
* Modified by Neural Magic
|
|
* Copyright (C) Marlin.2024 Elias Frantar
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <torch/all.h>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <cuda.h>
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <iostream>
|
|
|
|
template <typename T>
|
|
inline std::string str(T x) {
|
|
return std::to_string(x);
|
|
}
|
|
|
|
namespace marlin {
|
|
|
|
constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
|
|
|
// Instances of `Vec` are used to organize groups of >>registers<<, as needed
|
|
// for instance as inputs to tensor core operations. Consequently, all
|
|
// corresponding index accesses must be compile-time constants, which is why we
|
|
// extensively use `#pragma unroll` throughout the kernel code to guarantee
|
|
// this.
|
|
template <typename T, int n>
|
|
struct Vec {
|
|
T elems[n];
|
|
__device__ T& operator[](int i) { return elems[i]; }
|
|
};
|
|
|
|
using I4 = Vec<int, 4>;
|
|
|
|
// Matrix fragments for tensor core instructions; their precise layout is
|
|
// documented here:
|
|
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type
|
|
using FragA = Vec<half2, 4>;
|
|
using FragB = Vec<half2, 2>;
|
|
using FragC = Vec<float, 4>;
|
|
using FragS = Vec<half2, 1>; // quantization scales
|
|
|
|
// Predicated asynchronous global->shared copy; used for inputs A where we apply
|
|
// predication to handle batchsizes that are not multiples of 16.
|
|
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
|
|
bool pred = true) {
|
|
const int BYTES = 16;
|
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
|
|
asm volatile(
|
|
"{\n"
|
|
" .reg .pred p;\n"
|
|
" setp.ne.b32 p, %0, 0;\n"
|
|
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
|
|
"}\n" ::"r"((int)pred),
|
|
"r"(smem), "l"(glob_ptr), "n"(BYTES));
|
|
}
|
|
|
|
// Asynchronous global->shared copy
|
|
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
|
|
const int BYTES = 16;
|
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
|
|
asm volatile(
|
|
"{\n"
|
|
" cp.async.cg.shared.global [%0], [%1], %2;\n"
|
|
"}\n" ::"r"(smem),
|
|
"l"(glob_ptr), "n"(BYTES));
|
|
}
|
|
|
|
// Async copy fence.
|
|
__device__ inline void cp_async_fence() {
|
|
asm volatile("cp.async.commit_group;\n" ::);
|
|
}
|
|
|
|
// Wait until at most `n` async copy stages are still pending.
|
|
template <int n>
|
|
__device__ inline void cp_async_wait() {
|
|
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
|
|
}
|
|
|
|
// m16n8k16 tensor core mma instruction with fp16 inputs and fp32
|
|
// output/accumulation.
|
|
__device__ inline void mma(const FragA& a_frag, const FragB& frag_b,
|
|
FragC& frag_c) {
|
|
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
|
|
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
|
|
float* c = reinterpret_cast<float*>(&frag_c);
|
|
asm volatile(
|
|
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
|
|
"{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
|
|
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
|
|
: "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
|
|
"f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
|
|
}
|
|
|
|
// Instruction for loading a full 16x16 matrix fragment of operand A from shared
|
|
// memory, directly in tensor core layout.
|
|
__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) {
|
|
uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
|
|
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
|
|
asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n"
|
|
: "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3])
|
|
: "r"(smem));
|
|
}
|
|
|
|
// Lookup-table based 3-input logical operation; explicitly used for
|
|
// dequantization as the compiler does not seem to automatically recognize it in
|
|
// all cases.
|
|
template <int lut>
|
|
__device__ inline int lop3(int a, int b, int c) {
|
|
int res;
|
|
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
|
|
: "=r"(res)
|
|
: "r"(a), "r"(b), "r"(c), "n"(lut));
|
|
return res;
|
|
}
|
|
|
|
// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
|
|
// values. We mostly follow the strategy in the link below, with some small
|
|
// changes:
|
|
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
|
|
__device__ inline FragB dequant(int q) {
|
|
const int LO = 0x000f000f;
|
|
const int HI = 0x00f000f0;
|
|
const int EX = 0x64006400;
|
|
// Guarantee that the `(a & b) | c` operations are LOP3s.
|
|
int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
|
|
int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
|
|
// We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
|
|
// directly into `SUB` and `ADD`.
|
|
const int SUB = 0x64086408;
|
|
const int MUL = 0x2c002c00;
|
|
const int ADD = 0xd480d480;
|
|
FragB frag_b;
|
|
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
|
|
*reinterpret_cast<const half2*>(&SUB));
|
|
frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
|
|
*reinterpret_cast<const half2*>(&MUL),
|
|
*reinterpret_cast<const half2*>(&ADD));
|
|
return frag_b;
|
|
}
|
|
|
|
// Multiply dequantized values by the corresponding quantization scale; used
|
|
// only for grouped quantization.
|
|
__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
|
|
half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]);
|
|
frag_b[0] = __hmul2(frag_b[0], s);
|
|
frag_b[1] = __hmul2(frag_b[1], s);
|
|
}
|
|
|
|
// Wait until barrier reaches `count`, then lock for current threadblock.
|
|
__device__ inline void barrier_acquire(int* lock, int count) {
|
|
if (threadIdx.x == 0) {
|
|
int state = -1;
|
|
do
|
|
// Guarantee that subsequent writes by this threadblock will be visible
|
|
// globally.
|
|
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
|
|
: "=r"(state)
|
|
: "l"(lock));
|
|
while (state != count);
|
|
}
|
|
__syncthreads();
|
|
}
|
|
|
|
// Release barrier and increment visitation count.
|
|
__device__ inline void barrier_release(int* lock, bool reset = false) {
|
|
__syncthreads();
|
|
if (threadIdx.x == 0) {
|
|
if (reset) {
|
|
lock[0] = 0;
|
|
return;
|
|
}
|
|
int val = 1;
|
|
// Make sure that all writes since acquiring this barrier are visible
|
|
// globally, while releasing the barrier.
|
|
asm volatile("fence.acq_rel.gpu;\n");
|
|
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
|
|
:
|
|
: "l"(lock), "r"(val));
|
|
}
|
|
}
|
|
|
|
template <const int threads, // number of threads in a threadblock
|
|
const int thread_m_blocks, // number of 16x16 blocks in the m
|
|
// dimension (batchsize) of the
|
|
// threadblock
|
|
const int thread_n_blocks, // same for n dimension (output)
|
|
const int thread_k_blocks, // same for k dimension (reduction)
|
|
const int stages, // number of stages for the async global->shared
|
|
// fetch pipeline
|
|
const int group_blocks = -1 // number of consecutive 16x16 blocks
|
|
// with a separate quantization scale
|
|
>
|
|
__global__ void Marlin(
|
|
const int4* __restrict__ A, // fp16 input matrix of shape mxk
|
|
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
|
|
int4* __restrict__ C, // fp16 output buffer of shape mxn
|
|
const int4* __restrict__ s, // fp16 quantization scales of shape
|
|
// (k/groupsize)xn
|
|
int prob_m, // batch dimension m
|
|
int prob_n, // output dimension n
|
|
int prob_k, // reduction dimension k
|
|
int* locks // extra global storage for barrier synchronization
|
|
) {
|
|
// Each threadblock processes one "stripe" of the B matrix with (roughly) the
|
|
// same size, which might involve multiple column "slices" (of width 16 *
|
|
// `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
|
|
// example:
|
|
// 0 1 3
|
|
// 0 2 3
|
|
// 1 2 4
|
|
// While this kind of partitioning makes things somewhat more complicated, it
|
|
// ensures good utilization of all SMs for many kinds of shape and GPU
|
|
// configurations, while requiring as few slow global cross-threadblock
|
|
// reductions as possible.
|
|
|
|
// For larger GEMMs we run multiple batchsize 64 versions in parallel for a
|
|
// better partitioning with less reductions
|
|
int parallel = 1;
|
|
if (prob_m > 16 * thread_m_blocks) {
|
|
parallel = prob_m / (16 * thread_m_blocks);
|
|
prob_m = 16 * thread_m_blocks;
|
|
}
|
|
|
|
int k_tiles = prob_k / 16 / thread_k_blocks;
|
|
int n_tiles = prob_n / 16 / thread_n_blocks;
|
|
int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x);
|
|
// Ensure that the number of tiles in each stripe is a multiple of the
|
|
// groupsize; this avoids an annoying special case where a stripe starts in
|
|
// the middle of group.
|
|
if (group_blocks != -1)
|
|
iters = (group_blocks / thread_k_blocks) *
|
|
ceildiv(iters, (group_blocks / thread_k_blocks));
|
|
|
|
int slice_row = (iters * blockIdx.x) % k_tiles;
|
|
int slice_col_par = (iters * blockIdx.x) / k_tiles;
|
|
int slice_col = slice_col_par;
|
|
int slice_iters; // number of threadblock tiles in the current slice
|
|
int slice_count =
|
|
0; // total number of active threadblocks in the current slice
|
|
int slice_idx; // index of threadblock in current slice; numbered bottom to
|
|
// top
|
|
|
|
// We can easily implement parallel problem execution by just remapping
|
|
// indices and advancing global pointers
|
|
if (slice_col_par >= n_tiles) {
|
|
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
|
|
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
|
|
locks += (slice_col_par / n_tiles) * n_tiles;
|
|
slice_col = slice_col_par % n_tiles;
|
|
}
|
|
|
|
// Compute all information about the current slice which is required for
|
|
// synchronization.
|
|
auto init_slice = [&]() {
|
|
slice_iters =
|
|
iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
|
|
if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
|
|
if (slice_iters == 0) return;
|
|
if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
|
|
slice_count = 1;
|
|
slice_idx = 0;
|
|
int col_first = iters * ceildiv(k_tiles * slice_col_par, iters);
|
|
if (col_first <= k_tiles * (slice_col_par + 1)) {
|
|
int col_off = col_first - k_tiles * slice_col_par;
|
|
slice_count = ceildiv(k_tiles - col_off, iters);
|
|
if (col_off > 0) slice_count++;
|
|
int delta_first = iters * blockIdx.x - col_first;
|
|
if (delta_first < 0 || (col_off == 0 && delta_first == 0))
|
|
slice_idx = slice_count - 1;
|
|
else {
|
|
slice_idx = slice_count - 1 - delta_first / iters;
|
|
if (col_off > 0) slice_idx--;
|
|
}
|
|
}
|
|
if (slice_col == n_tiles) {
|
|
A += 16 * thread_m_blocks * prob_k / 8;
|
|
C += 16 * thread_m_blocks * prob_n / 8;
|
|
locks += n_tiles;
|
|
slice_col = 0;
|
|
}
|
|
};
|
|
init_slice();
|
|
|
|
int a_gl_stride = prob_k / 8; // stride of the A matrix in global memory
|
|
// We typically use `constexpr` to indicate that this value is a compile-time
|
|
// constant
|
|
constexpr int a_sh_stride =
|
|
16 * thread_k_blocks / 8; // stride of an A matrix tile in shared memory
|
|
constexpr int a_gl_rd_delta_o =
|
|
16 * thread_k_blocks /
|
|
8; // delta between subsequent A tiles in global memory
|
|
int a_gl_rd_delta_i =
|
|
a_gl_stride *
|
|
(threads / a_gl_rd_delta_o); // between subsequent accesses within a tile
|
|
constexpr int a_sh_wr_delta =
|
|
a_sh_stride *
|
|
(threads / a_gl_rd_delta_o); // between shared memory writes
|
|
constexpr int a_sh_rd_delta_o =
|
|
2 * ((threads / 32) /
|
|
(thread_n_blocks / 4)); // between shared memory tile reads
|
|
constexpr int a_sh_rd_delta_i =
|
|
a_sh_stride * 16; // within a shared memory tile
|
|
constexpr int a_sh_stage =
|
|
a_sh_stride * (16 * thread_m_blocks); // overall size of a tile
|
|
constexpr int a_sh_wr_iters =
|
|
ceildiv(a_sh_stage,
|
|
a_sh_wr_delta); // number of shared write iterations for a tile
|
|
|
|
int b_gl_stride = 16 * prob_n / 32;
|
|
constexpr int b_sh_stride = 32 * thread_n_blocks / 4;
|
|
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
|
|
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride);
|
|
constexpr int b_sh_wr_delta = threads;
|
|
constexpr int b_sh_rd_delta = threads;
|
|
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
|
|
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
|
|
|
|
int s_gl_stride = prob_n / 8;
|
|
constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
|
|
constexpr int s_sh_stage = s_sh_stride;
|
|
int s_gl_rd_delta = s_gl_stride;
|
|
|
|
// Global A read index of current thread.
|
|
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
(threadIdx.x % a_gl_rd_delta_o);
|
|
a_gl_rd += a_gl_rd_delta_o * slice_row;
|
|
// Shared write index of current thread.
|
|
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
(threadIdx.x % a_gl_rd_delta_o);
|
|
// Shared read index.
|
|
int a_sh_rd =
|
|
a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
|
|
a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
|
|
|
|
int b_gl_rd =
|
|
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
|
|
b_gl_rd += b_sh_stride * slice_col;
|
|
b_gl_rd += b_gl_rd_delta_o * slice_row;
|
|
int b_sh_wr = threadIdx.x;
|
|
int b_sh_rd = threadIdx.x;
|
|
|
|
int s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
|
|
s_sh_stride * slice_col + threadIdx.x;
|
|
int s_sh_wr = threadIdx.x;
|
|
int s_sh_rd;
|
|
// We use a different scale layout for grouped and column-wise quantization as
|
|
// we scale a `half2` tile in column-major layout in the former and in
|
|
// row-major in the latter case.
|
|
if (group_blocks != -1)
|
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
|
(threadIdx.x % 32) / 4;
|
|
else
|
|
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
|
(threadIdx.x % 32) % 4;
|
|
|
|
// Precompute which thread should not read memory in which iterations; this is
|
|
// needed if there are more threads than required for a certain tilesize or
|
|
// when the batchsize is not a multiple of 16.
|
|
bool a_sh_wr_pred[a_sh_wr_iters];
|
|
#pragma unroll
|
|
for (int i = 0; i < a_sh_wr_iters; i++)
|
|
a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
|
|
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
|
|
|
|
// To ensure that writing and reading A tiles to/from shared memory, the
|
|
// latter in fragment format, is fully bank conflict free, we need to use a
|
|
// rather fancy XOR-based layout. The key here is that neither reads nor
|
|
// writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
|
|
// same shared memory banks. Further, it seems (based on NSight-Compute) that
|
|
// each warp must also write a consecutive memory segment?
|
|
auto transform_a = [&](int i) {
|
|
int row = i / a_gl_rd_delta_o;
|
|
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
|
|
};
|
|
// Since the computation of this remapping is non-trivial and, due to our main
|
|
// loop unrolls, all shared memory accesses are static, we simply precompute
|
|
// both transformed reads and writes.
|
|
int a_sh_wr_trans[a_sh_wr_iters];
|
|
#pragma unroll
|
|
for (int i = 0; i < a_sh_wr_iters; i++)
|
|
a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
|
|
int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
|
|
#pragma unroll
|
|
for (int i = 0; i < b_sh_wr_iters; i++) {
|
|
#pragma unroll
|
|
for (int j = 0; j < thread_m_blocks; j++)
|
|
a_sh_rd_trans[i][j] =
|
|
transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
|
|
}
|
|
|
|
// Since B-accesses have non-constant stride they have to be computed at
|
|
// runtime; we break dependencies between subsequent accesses with a tile by
|
|
// maintining multiple pointers (we have enough registers), a tiny
|
|
// optimization.
|
|
const int4* B_ptr[b_sh_wr_iters];
|
|
#pragma unroll
|
|
for (int i = 0; i < b_sh_wr_iters; i++)
|
|
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
|
|
|
|
extern __shared__ int4 sh[];
|
|
// Shared memory storage for global fetch pipelines.
|
|
int4* sh_a = sh;
|
|
int4* sh_b = sh_a + (stages * a_sh_stage);
|
|
int4* sh_s = sh_b + (stages * b_sh_stage);
|
|
// Register storage for double buffer of shared memory reads.
|
|
FragA frag_a[2][thread_m_blocks];
|
|
I4 frag_b_quant[2];
|
|
FragC frag_c[thread_m_blocks][4][2];
|
|
FragS frag_s[2][4];
|
|
|
|
// Zero accumulators.
|
|
auto zero_accums = [&]() {
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
|
|
reinterpret_cast<float*>(frag_c)[i] = 0;
|
|
};
|
|
|
|
// Asynchronously fetch the next A, B and s tile from global to the next
|
|
// shared memory pipeline location.
|
|
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
|
|
if (pred) {
|
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
|
|
#pragma unroll
|
|
for (int i = 0; i < a_sh_wr_iters; i++) {
|
|
cp_async4_pred(
|
|
&sh_a_stage[a_sh_wr_trans[i]],
|
|
&A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
|
|
a_sh_wr_pred[i]);
|
|
}
|
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
|
|
#pragma unroll
|
|
for (int i = 0; i < b_sh_wr_iters; i++) {
|
|
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
|
|
B_ptr[i] += b_gl_rd_delta_o;
|
|
}
|
|
// Only fetch scales if this tile starts a new group
|
|
if (group_blocks != -1 && pipe % (group_blocks / thread_k_blocks) == 0) {
|
|
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
|
|
if (s_sh_wr_pred) cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
|
|
s_gl_rd += s_gl_rd_delta;
|
|
}
|
|
}
|
|
// Insert a fence even when we are winding down the pipeline to ensure that
|
|
// waiting is also correct at this point.
|
|
cp_async_fence();
|
|
};
|
|
|
|
// Wait until the next thread tile has been loaded to shared memory.
|
|
auto wait_for_stage = [&]() {
|
|
// We only have `stages - 2` active fetches since we are double buffering
|
|
// and can only issue the next fetch when it is guaranteed that the previous
|
|
// shared memory load is fully complete (as it may otherwise be
|
|
// overwritten).
|
|
cp_async_wait<stages - 2>();
|
|
__syncthreads();
|
|
};
|
|
|
|
// Load the next sub-tile from the current location in the shared memory pipe
|
|
// into the current register buffer.
|
|
auto fetch_to_registers = [&](int k, int pipe) {
|
|
// It may seem inefficient that we reload the groups for every sub-tile;
|
|
// however, this does not seem to be a significant bottleneck, while some
|
|
// theoretically better attempts have lead to bad instruction ordering by
|
|
// the compiler and correspondingly a noticeable drop in performance.
|
|
if (group_blocks != -1) {
|
|
int4* sh_s_stage =
|
|
sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
|
|
(pipe / (group_blocks / thread_k_blocks)));
|
|
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
|
|
}
|
|
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks; i++)
|
|
ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
|
|
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
|
|
frag_b_quant[k % 2] = *reinterpret_cast<I4*>(
|
|
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]);
|
|
};
|
|
|
|
// Execute the actual tensor core matmul of a sub-tile.
|
|
auto matmul = [&](int k) {
|
|
// We have the m dimension as the inner loop in order to encourage overlapping
|
|
// dequantization and matmul operations.
|
|
#pragma unroll
|
|
for (int j = 0; j < 4; j++) {
|
|
int b_quant = frag_b_quant[k % 2][j];
|
|
int b_quant_shift = b_quant >> 8;
|
|
FragB frag_b0 = dequant(b_quant);
|
|
// If there are no groups, we can just scale the final output once and can
|
|
// avoid doing so for each weight.
|
|
if (group_blocks != -1) scale(frag_b0, frag_s[k % 2][j], 0);
|
|
FragB frag_b1 = dequant(b_quant_shift);
|
|
if (group_blocks != -1) scale(frag_b1, frag_s[k % 2][j], 1);
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks; i++) {
|
|
mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
|
|
mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Since we slice across the k dimension of a tile in order to increase the
|
|
// number of warps while keeping the n dimension of a tile reasonable, we have
|
|
// multiple warps that accumulate their partial sums of the same output
|
|
// location; which we have to reduce over in the end. We do in shared memory.
|
|
auto thread_block_reduce = [&]() {
|
|
constexpr int red_off = threads / b_sh_stride / 2;
|
|
if (red_off >= 1) {
|
|
int red_idx = threadIdx.x / b_sh_stride;
|
|
constexpr int red_sh_stride = b_sh_stride * 4 * 2;
|
|
constexpr int red_sh_delta = b_sh_stride;
|
|
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
|
|
(threadIdx.x % b_sh_stride);
|
|
|
|
// Parallel logarithmic shared memory reduction. We make sure to avoid any
|
|
// unnecessary read or write iterations, e.g., for two warps we write only
|
|
// once by warp 1 and read only once by warp 0.
|
|
|
|
#pragma unroll
|
|
for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
|
|
#pragma unroll
|
|
for (int i = red_off; i > 0; i /= 2) {
|
|
if (i <= red_idx && red_idx < 2 * i) {
|
|
#pragma unroll
|
|
for (int j = 0; j < 4 * 2; j++) {
|
|
int red_sh_wr =
|
|
red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
|
|
if (i < red_off) {
|
|
float* c_rd =
|
|
reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
|
|
float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
|
|
#pragma unroll
|
|
for (int k = 0; k < 4; k++)
|
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
|
|
c_rd[k] + c_wr[k];
|
|
}
|
|
sh[red_sh_wr] =
|
|
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
|
|
}
|
|
}
|
|
__syncthreads();
|
|
}
|
|
if (red_idx == 0) {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4 * 2; i++) {
|
|
float* c_rd =
|
|
reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
|
|
#pragma unroll
|
|
for (int j = 0; j < 4; j++)
|
|
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
|
|
c_rd[j];
|
|
}
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
};
|
|
|
|
// Since multiple threadblocks may process parts of the same column slice, we
|
|
// finally have to globally reduce over the results. As the striped
|
|
// partitioning minimizes the number of such reductions and our outputs are
|
|
// usually rather small, we perform this reduction serially in L2 cache.
|
|
auto global_reduce = [&](bool first = false, bool last = false) {
|
|
// We are very careful here to reduce directly in the output buffer to
|
|
// maximize L2 cache utilization in this step. To do this, we write out
|
|
// results in FP16 (but still reduce with FP32 compute).
|
|
constexpr int active_threads = 32 * thread_n_blocks / 4;
|
|
if (threadIdx.x < active_threads) {
|
|
int c_gl_stride = prob_n / 8;
|
|
int c_gl_wr_delta_o = 8 * c_gl_stride;
|
|
int c_gl_wr_delta_i = 4 * (active_threads / 32);
|
|
int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
|
|
4 * (threadIdx.x / 32) + threadIdx.x % 4;
|
|
c_gl_wr += (2 * thread_n_blocks) * slice_col;
|
|
constexpr int c_sh_wr_delta = active_threads;
|
|
int c_sh_wr = threadIdx.x;
|
|
|
|
int row = (threadIdx.x % 32) / 4;
|
|
|
|
if (!first) {
|
|
// Interestingly, doing direct global accesses here really seems to mess up
|
|
// the compiler and lead to slowdowns, hence we also use async-copies even
|
|
// though these fetches are not actually asynchronous.
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks * 4; i++) {
|
|
cp_async4_pred(
|
|
&sh[c_sh_wr + c_sh_wr_delta * i],
|
|
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
|
|
c_gl_wr_delta_i * (i % 2)],
|
|
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
|
|
}
|
|
cp_async_fence();
|
|
cp_async_wait<0>();
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks * 4; i++) {
|
|
if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
|
|
if (!first) {
|
|
int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
|
|
#pragma unroll
|
|
for (int j = 0; j < 2 * 4; j++) {
|
|
reinterpret_cast<float*>(
|
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
|
|
__half2float(reinterpret_cast<__half*>(&c_red)[j]);
|
|
}
|
|
}
|
|
if (!last) {
|
|
int4 c;
|
|
#pragma unroll
|
|
for (int j = 0; j < 2 * 4; j++) {
|
|
reinterpret_cast<__half*>(&c)[j] =
|
|
__float2half(reinterpret_cast<float*>(
|
|
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]);
|
|
}
|
|
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
|
|
c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Write out the reduce final result in the correct layout. We only actually
|
|
// reshuffle matrix fragments in this step, the reduction above is performed
|
|
// in fragment layout.
|
|
auto write_result = [&]() {
|
|
int c_gl_stride = prob_n / 8;
|
|
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
|
|
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
|
|
constexpr int c_sh_rd_delta =
|
|
c_sh_stride * (threads / (2 * thread_n_blocks));
|
|
|
|
int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
|
|
(threadIdx.x % (2 * thread_n_blocks));
|
|
c_gl_wr += (2 * thread_n_blocks) * slice_col;
|
|
int c_sh_wr =
|
|
(4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
|
|
c_sh_wr += 32 * (threadIdx.x / 32);
|
|
int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
|
|
(threadIdx.x % (2 * thread_n_blocks));
|
|
|
|
int c_gl_wr_end = c_gl_stride * prob_m;
|
|
|
|
// We first reorder in shared memory to guarantee the most efficient final
|
|
// global write patterns
|
|
auto write = [&](int idx, float c0, float c1, FragS& s) {
|
|
half2 res = __halves2half2(__float2half(c0), __float2half(c1));
|
|
if (group_blocks ==
|
|
-1) // for per-column quantization we finally apply the scale here
|
|
res = __hmul2(res, s[0]);
|
|
((half2*)sh)[idx] = res;
|
|
};
|
|
if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
#pragma unroll
|
|
for (int i = 0; i < thread_m_blocks; i++) {
|
|
#pragma unroll
|
|
for (int j = 0; j < 4; j++) {
|
|
int wr = c_sh_wr + 8 * j;
|
|
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
|
|
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
|
|
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
|
|
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
|
|
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
|
|
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
|
|
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
|
|
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
|
|
}
|
|
c_sh_wr += 16 * (4 * c_sh_stride);
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int i = 0;
|
|
i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
|
|
i++) {
|
|
if (c_gl_wr < c_gl_wr_end) {
|
|
C[c_gl_wr] = sh[c_sh_rd];
|
|
c_gl_wr += c_gl_wr_delta;
|
|
c_sh_rd += c_sh_rd_delta;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Start global fetch and register load pipelines.
|
|
auto start_pipes = [&]() {
|
|
#pragma unroll
|
|
for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters);
|
|
zero_accums();
|
|
wait_for_stage();
|
|
fetch_to_registers(0, 0);
|
|
a_gl_rd += a_gl_rd_delta_o * (stages - 1);
|
|
};
|
|
start_pipes();
|
|
|
|
// Main loop.
|
|
while (slice_iters) {
|
|
// We unroll over both the global fetch and the register load pipeline to
|
|
// ensure all shared memory accesses are static. Note that both pipelines have
|
|
// even length meaning that the next iteration will always start at index 0.
|
|
#pragma unroll
|
|
for (int pipe = 0; pipe < stages;) {
|
|
#pragma unroll
|
|
for (int k = 0; k < b_sh_wr_iters; k++) {
|
|
fetch_to_registers(k + 1, pipe % stages);
|
|
if (k == b_sh_wr_iters - 2) {
|
|
fetch_to_shared((pipe + stages - 1) % stages, pipe,
|
|
slice_iters >= stages);
|
|
pipe++;
|
|
wait_for_stage();
|
|
}
|
|
matmul(k);
|
|
}
|
|
slice_iters--;
|
|
if (slice_iters == 0) break;
|
|
}
|
|
a_gl_rd += a_gl_rd_delta_o * stages;
|
|
|
|
// Process results and, if necessary, proceed to the next column slice.
|
|
// While this pattern may not be the most readable, other ways of writing
|
|
// the loop seemed to noticeably worse performance after compilation.
|
|
if (slice_iters == 0) {
|
|
cp_async_wait<0>();
|
|
bool last = slice_idx == slice_count - 1;
|
|
// For per-column scales, we only fetch them here in the final step before
|
|
// write-out
|
|
if (group_blocks == -1 && last) {
|
|
if (s_sh_wr_pred) cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
|
|
cp_async_fence();
|
|
}
|
|
thread_block_reduce();
|
|
if (group_blocks == -1 && last) {
|
|
cp_async_wait<0>();
|
|
__syncthreads();
|
|
if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
|
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
|
|
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
|
|
}
|
|
}
|
|
if (slice_count > 1) { // only globally reduce if there is more than one
|
|
// block in a slice
|
|
barrier_acquire(&locks[slice_col], slice_idx);
|
|
global_reduce(slice_idx == 0, last);
|
|
barrier_release(&locks[slice_col], last);
|
|
}
|
|
if (last) // only the last block in a slice actually writes the result
|
|
write_result();
|
|
slice_row = 0;
|
|
slice_col_par++;
|
|
slice_col++;
|
|
init_slice();
|
|
if (slice_iters) {
|
|
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
|
(threadIdx.x % a_gl_rd_delta_o);
|
|
#pragma unroll
|
|
for (int i = 0; i < b_sh_wr_iters; i++)
|
|
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
|
|
if (slice_col == 0) {
|
|
#pragma unroll
|
|
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
|
|
}
|
|
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
|
|
start_pipes();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
template <const int threads, // number of threads in a threadblock
|
|
const int thread_m_blocks, // number of 16x16 blocks in the m
|
|
// dimension (batchsize) of the
|
|
// threadblock
|
|
const int thread_n_blocks, // same for n dimension (output)
|
|
const int thread_k_blocks, // same for k dimension (reduction)
|
|
const int stages, // number of stages for the async global->shared
|
|
// fetch pipeline
|
|
const int group_blocks = -1 // number of consecutive 16x16 blocks
|
|
// with a separate quantization scale
|
|
>
|
|
__global__ void Marlin(
|
|
const int4* __restrict__ A, // fp16 input matrix of shape mxk
|
|
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
|
|
int4* __restrict__ C, // fp16 output buffer of shape mxn
|
|
const int4* __restrict__ s, // fp16 quantization scales of shape
|
|
// (k/groupsize)xn
|
|
int prob_m, // batch dimension m
|
|
int prob_n, // output dimension n
|
|
int prob_k, // reduction dimension k
|
|
int* locks // extra global storage for barrier synchronization
|
|
) {
|
|
// Marlin is not implemented yet for SM < 8.0
|
|
assert(false);
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
// 8 warps are a good choice since every SM has 4 schedulers and having more
|
|
// than 1 warp per schedule allows some more latency hiding. At the same time,
|
|
// we want relatively few warps to have many registers per warp and small tiles.
|
|
const int USER_THREADS =
|
|
256; // Note: This is only used with user-provided thread_k/n
|
|
const int STAGES = 4; // 4 pipeline stages fit into shared memory
|
|
const int SHARED_MEM =
|
|
96 * 1024; // max shared memory on compute capability 8.6 (< 8.0)
|
|
|
|
static constexpr int min_thread_n = 64;
|
|
static constexpr int min_thread_k = 64;
|
|
|
|
static constexpr int tile_size = 16;
|
|
static constexpr int max_par = 16;
|
|
|
|
static constexpr int pack_factor_4bit =
|
|
8; // We have 8 4-bit vals inside a 32 bit
|
|
|
|
#define __CALL_IF(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
|
GROUP_BLOCKS, NUM_THREADS) \
|
|
else if (thread_m_blocks == THREAD_M_BLOCKS && \
|
|
thread_n_blocks == THREAD_N_BLOCKS && \
|
|
thread_k_blocks == THREAD_K_BLOCKS && \
|
|
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \
|
|
cudaFuncSetAttribute(Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
|
|
THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS>, \
|
|
cudaFuncAttributeMaxDynamicSharedMemorySize, \
|
|
SHARED_MEM); \
|
|
Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
|
STAGES, GROUP_BLOCKS><<<blocks, NUM_THREADS, SHARED_MEM, stream>>>( \
|
|
A_ptr, B_ptr, C_ptr, s_ptr, prob_m, prob_n, prob_k, locks); \
|
|
}
|
|
|
|
typedef struct {
|
|
int thread_k;
|
|
int thread_n;
|
|
int num_threads;
|
|
} thread_config_t;
|
|
|
|
thread_config_t small_batch_thread_configs[] = {
|
|
// Ordered by priority
|
|
|
|
// thread_k, thread_n, num_threads
|
|
{128, 128, 256}, // Default
|
|
{128, 64, 128}, // Reduce N 2X, same K
|
|
{64, 256, 256}, // Reduce K 2X, increase N 2X
|
|
{64, 128, 128}, // Reduce K 2X, same N
|
|
};
|
|
|
|
thread_config_t large_batch_thread_configs[] = {
|
|
// Ordered by priority
|
|
|
|
// thread_k, thread_n, num_threads
|
|
{64, 256, 256}, // Default
|
|
{128, 128, 256}, // Reduce N 2X, increase K 2X
|
|
{64, 128, 128}, // Reduce N 2X, same K
|
|
{128, 64, 128}, // Reduce N 4X, increase K 2X
|
|
};
|
|
|
|
bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
|
|
int prob_k) {
|
|
// Sanity
|
|
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
|
|
th_config.num_threads == -1) {
|
|
return false;
|
|
}
|
|
|
|
// Verify K/N are divisible by thread K/N
|
|
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
|
|
return false;
|
|
}
|
|
|
|
// thread_k can be only 128 or 64 (because it must be less than groupsize
|
|
// which is 128)
|
|
if (th_config.thread_k != 128 && th_config.thread_k != 64) {
|
|
return false;
|
|
}
|
|
|
|
// Verify min for thread K/N
|
|
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
|
|
return false;
|
|
}
|
|
|
|
// num_threads must be at least 128 (= 4 warps)
|
|
if (th_config.num_threads < 128) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) {
|
|
if (prob_m <= 16) {
|
|
for (auto th_config : small_batch_thread_configs) {
|
|
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
|
|
return th_config;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for (auto th_config : large_batch_thread_configs) {
|
|
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
|
|
return th_config;
|
|
}
|
|
}
|
|
}
|
|
|
|
return thread_config_t{-1, -1, -1};
|
|
}
|
|
|
|
#define CALL_IF(N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
|
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
|
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
|
|
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
|
|
__CALL_IF(2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
|
|
__CALL_IF(2, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
|
|
__CALL_IF(3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
|
|
__CALL_IF(3, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
|
|
__CALL_IF(4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
|
|
__CALL_IF(4, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)
|
|
|
|
void marlin_cuda(const void* A, const void* B, void* C, void* s, int prob_m,
|
|
int prob_n, int prob_k, void* workspace, int groupsize = -1,
|
|
int dev = 0, cudaStream_t stream = 0, int thread_k = -1,
|
|
int thread_n = -1, int sms = -1, int max_par = 16) {
|
|
int tot_m = prob_m;
|
|
int tot_m_blocks = ceildiv(tot_m, 16);
|
|
int pad = 16 * tot_m_blocks - tot_m;
|
|
|
|
if (sms == -1)
|
|
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
|
|
|
|
// Set thread config
|
|
thread_config_t th_config;
|
|
if (thread_k != -1 && thread_n != -1) {
|
|
// User-defined config
|
|
th_config = thread_config_t{thread_k, thread_n, USER_THREADS};
|
|
} else {
|
|
// Auto config
|
|
th_config = determine_thread_config(prob_m, prob_n, prob_k);
|
|
}
|
|
|
|
if (!is_valid_config(th_config, prob_m, prob_n, prob_k)) {
|
|
throw std::runtime_error(
|
|
"Invalid thread config: thread_k = " + str(th_config.thread_k) +
|
|
", thread_n = " + str(th_config.thread_n) +
|
|
", num_threads = " + str(th_config.num_threads) + " for MKN = [" +
|
|
str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]");
|
|
}
|
|
|
|
// Uncomment for debug
|
|
// std::cout << "Using thread_config: thread_k = " + str(th_config.thread_k) +
|
|
// ", thread_n = " + str(th_config.thread_n) +
|
|
// ", num_threads = " + str(th_config.num_threads) + " for
|
|
// MKN = [" + str(prob_m) +
|
|
// ", " + str(prob_k) + ", " + str(prob_n) + "]\n";
|
|
|
|
int num_threads = th_config.num_threads;
|
|
thread_k = th_config.thread_k;
|
|
thread_n = th_config.thread_n;
|
|
|
|
int thread_k_blocks = thread_k / 16;
|
|
int thread_n_blocks = thread_n / 16;
|
|
int group_blocks = (groupsize == -1) ? -1 : groupsize / 16;
|
|
int blocks = sms;
|
|
|
|
if (prob_m == 0 || prob_n == 0 || prob_k == 0) {
|
|
return;
|
|
}
|
|
|
|
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
|
|
" is not divisible by thread_n = ", thread_n);
|
|
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
|
|
" is not divisible by thread_k = ", thread_k);
|
|
if (group_blocks != -1) {
|
|
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
|
|
" is not divisible by group_blocks = ", group_blocks);
|
|
}
|
|
|
|
const int4* A_ptr = (const int4*)A;
|
|
const int4* B_ptr = (const int4*)B;
|
|
int4* C_ptr = (int4*)C;
|
|
const int4* s_ptr = (const int4*)s;
|
|
|
|
int* locks = (int*)workspace;
|
|
|
|
for (int i = 0; i < tot_m_blocks; i += 4) {
|
|
int thread_m_blocks = tot_m_blocks - i;
|
|
prob_m = tot_m - 16 * i;
|
|
int par = 1;
|
|
if (thread_m_blocks > 4) {
|
|
// Note that parallel > 1 currently only works for inputs without any
|
|
// padding
|
|
par = (16 * thread_m_blocks - pad) / 64;
|
|
if (par > max_par) par = max_par;
|
|
prob_m = 64 * par;
|
|
i += 4 * (par - 1);
|
|
thread_m_blocks = 4;
|
|
}
|
|
|
|
// For compilation speed, we only define the kernel configurations that have
|
|
// seemed useful (in terms of performance) in our testing, however many more
|
|
// are, in principle, possible.
|
|
if (false) {
|
|
}
|
|
CALL_IF(8, 8, 256)
|
|
CALL_IF(16, 4, 256)
|
|
CALL_IF(8, 4, 128)
|
|
CALL_IF(4, 8, 128)
|
|
else {
|
|
throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) +
|
|
", " + str(prob_k) + ", " + str(prob_n) + "]" +
|
|
", groupsize = " + str(groupsize) +
|
|
", thread_m_blocks = " + str(thread_m_blocks) +
|
|
", thread_n_blocks = " + str(thread_n_blocks) +
|
|
", thread_k_blocks = " + str(thread_k_blocks));
|
|
}
|
|
|
|
A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
|
|
C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
|
|
}
|
|
}
|
|
|
|
} // namespace marlin
|
|
|
|
torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
|
torch::Tensor& b_scales, torch::Tensor& workspace,
|
|
int64_t size_m, int64_t size_n, int64_t size_k) {
|
|
// Verify M
|
|
TORCH_CHECK(size_m == a.size(0),
|
|
"Shape mismatch: a.size(0) = " + str(a.size(0)) +
|
|
", size_m = " + str(size_m));
|
|
|
|
// Verify K
|
|
TORCH_CHECK(size_k == a.size(1),
|
|
"Shape mismatch: a.size(1) = " + str(a.size(1)) +
|
|
", size_k = " + str(size_k));
|
|
TORCH_CHECK(size_k % marlin::tile_size == 0,
|
|
"size_k = " + str(size_k) +
|
|
" is not divisible by tile_size = " + str(marlin::tile_size));
|
|
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
|
|
"Shape mismatch: b_q_weight.size(0) = " +
|
|
str(b_q_weight.size(0)) + ", size_k = " + str(size_k) +
|
|
", tile_size = " + str(marlin::tile_size));
|
|
|
|
// Verify N
|
|
TORCH_CHECK(b_scales.size(1) == size_n,
|
|
"b_scales.size(1) = " + str(b_scales.size(1)) +
|
|
", size_n = " + str(size_n));
|
|
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
|
|
"b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
|
|
" is not divisible by tile_size = " + str(marlin::tile_size));
|
|
|
|
int actual_size_n =
|
|
(b_q_weight.size(1) / marlin::tile_size) * marlin::pack_factor_4bit;
|
|
TORCH_CHECK(
|
|
size_n == actual_size_n,
|
|
"size_n = " + str(size_n) + ", actual_size_n = " + str(actual_size_n));
|
|
|
|
// Verify A device and strides
|
|
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
|
|
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
|
|
|
|
// Verify B device and strides
|
|
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
|
|
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
|
|
|
|
// Verify scales device and strides
|
|
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
|
|
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
|
|
|
|
// Alloc C matrix
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
|
|
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
|
|
torch::Tensor c = torch::empty({size_m, size_n}, options);
|
|
|
|
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
|
|
// auto -1)
|
|
int thread_k = -1;
|
|
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
|
|
// auto -1)
|
|
int thread_n = -1;
|
|
// sms: number of SMs to use for the kernel (can usually be left as auto -1)
|
|
int sms = -1;
|
|
|
|
// Detect groupsize
|
|
if (b_scales.size(0) != 1) {
|
|
TORCH_CHECK(size_k % b_scales.size(0) == 0,
|
|
"size_k = " + str(size_k) +
|
|
", is not divisible by b_scales.size(0) = " +
|
|
str(b_scales.size(0)));
|
|
}
|
|
int groupsize = b_scales.size(0) == 1 ? -1 : size_k / b_scales.size(0);
|
|
|
|
// Verify groupsize
|
|
TORCH_CHECK(groupsize == -1 || groupsize == 128,
|
|
"Unexpected groupsize = " + str(groupsize));
|
|
|
|
// Verify workspace size
|
|
TORCH_CHECK(
|
|
size_n % marlin::min_thread_n == 0,
|
|
"size_n = " + str(size_n) +
|
|
", is not divisible by min_thread_n = " + str(marlin::min_thread_n));
|
|
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
|
|
TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
|
"workspace.numel = " + str(workspace.numel()) +
|
|
" is below min_workspace_size = " + str(min_workspace_size));
|
|
|
|
int dev = a.get_device();
|
|
marlin::marlin_cuda(a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(),
|
|
b_scales.data_ptr(), size_m, size_n, size_k,
|
|
workspace.data_ptr(), groupsize, dev,
|
|
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n,
|
|
sms, marlin::max_par);
|
|
|
|
return c;
|
|
}
|