text-generation-inference/integration-tests/models/test_flash_mixtral_gptq.py
Daniël de Kok 90a1d04a2f
Add support for GPTQ-quantized MoE models using MoE Marlin (#2557)
This change add support for MoE models that use GPTQ quantization.
Currently only models with the following properties are supported:

- No `desc_act` with tensor parallelism, unless `group_size=-1`.
- No asymmetric quantization.
- No AWQ.
2024-09-30 11:14:32 +02:00

61 lines
1.6 KiB
Python

import pytest
@pytest.fixture(scope="module")
def flash_mixtral_gptq_handle(launcher):
with launcher("TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ", num_shard=2) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_mixtral_gptq(flash_mixtral_gptq_handle):
await flash_mixtral_gptq_handle.health(300)
return flash_mixtral_gptq_handle.client
@pytest.mark.asyncio
async def test_flash_mixtral_gptq(flash_mixtral_gptq, response_snapshot):
response = await flash_mixtral_gptq.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
)
assert response == response_snapshot
@pytest.mark.asyncio
async def test_flash_mixtral_gptq_all_params(flash_mixtral_gptq, response_snapshot):
response = await flash_mixtral_gptq.generate(
"Test request",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
async def test_flash_mixtral_gptq_load(
flash_mixtral_gptq, generate_load, response_snapshot
):
responses = await generate_load(
flash_mixtral_gptq, "Test request", max_new_tokens=10, n=4
)
assert len(responses) == 4
assert all(
[r.generated_text == responses[0].generated_text for r in responses]
), f"{[r.generated_text for r in responses]}"
assert responses == response_snapshot