import re import torch import os import time import math from PIL import Image from io import BytesIO import base64 import numpy from opentelemetry import trace from loguru import logger from typing import Iterable, Optional, Tuple, List, Type, Dict import itertools import tempfile import copy from text_generation_server.models import Model from transformers import PreTrainedTokenizerBase from transformers.image_processing_utils import select_best_resolution from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.pb import generate_pb2 from text_generation_server.models.causal_lm import ( CausalLMBatch, CausalLMRequest, remove_kv_cache_from_output, biggest_single_chunk, ) from transformers.models.llava_next.modeling_llava_next import ( get_anyres_image_grid_shape, ) from transformers import AutoProcessor import text_generation_server.habana_quantization_env as hq_env from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi from text_generation_server.utils import ( HeterogeneousNextTokenChooser, StoppingCriteria, make_tokenizer_optional, is_tokenizer_transparent, pad_next_token_chooser_parameters, ) import habana_frameworks.torch as htorch from optimum.habana.utils import HabanaProfile from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES from optimum.habana.utils import get_hpu_memory_stats from optimum.habana.checkpoint_utils import get_ds_injection_policy from transformers import ( AutoTokenizer, AutoModel, PreTrainedTokenizerBase, AutoConfig, ) from optimum.habana.checkpoint_utils import ( get_repo_root, model_on_meta, write_checkpoints_json, ) from text_generation_server.utils.speculate import get_speculate from text_generation_server.models.types import ( Batch, Tokens, Generation, GeneratedText, ) from text_generation_server.utils.debug import dbg_trace tracer = trace.get_tracer(__name__) IDEFICS2_FAKE_TOKEN = "" IDEFICS2_IMAGE_TOKEN = "" IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)") BASE_IMAGE_TOKENS = int(os.environ.get('BASE_IMAGE_TOKENS', 2048)) MAX_TOTAL_TOKENS = int(os.environ.get('MAX_TOTAL_TOKENS', 8192)) MAX_BATCH_TOTAL_TOKENS = int(os.environ.get('MAX_BATCH_TOTAL_TOKENS', 131072)) PAD_SEQUENCE_TO_MULTIPLE_OF = int(os.environ.get('PAD_SEQUENCE_TO_MULTIPLE_OF', 256)) CHUNK_SIZES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] LAZY_MODE = int(os.environ.get('PT_HPU_LAZY_MODE', 1)) PREFILL_WARMUP_BATCH_SIZE_LIST = [] PREFILL_WARMUP_SEQLEN_LIST = [] DECODE_WARMUP_BATCH_SIZE_LIST = [] def round_up(warmup_list:list, num) : i = 0 for i in warmup_list: if num <= i : break return i def split(string) -> List[Dict[str, str]]: parts = [] cursor = 0 for pattern in IMAGES.finditer(string): start = pattern.start() if start != cursor: parts.append({"type": "text", "content": string[cursor:start]}) parts.append({"type": "image", "content": pattern.group(1)}) cursor = pattern.end() if cursor != len(string): parts.append({"type": "text", "content": string[cursor:]}) return parts def image_text_replacement(processor, image_input, config, image_id: int) -> str: if config.model_type == "idefics2": image_seq_len = 64 image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}" if processor.image_processor.do_image_splitting: image_str *= 5 return image_str elif config.model_type == "llava_next": height, width = image_input["image_sizes"][image_id] num_features = get_number_of_features(height, width, config) from loguru import logger logger.info( f"Found {num_features} features in image of resolution {height}x{width}", ) return "" * num_features elif config.model_type == "paligemma": return "" * config.text_config.num_image_tokens else: raise RuntimeError(f"Unknown config {config.model_type} for multimodal") def image_text_replacement_fixup(config, text: str) -> str: if config.model_type == "idefics2": return text.replace( f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN ) return text def get_unpadded_features( original_height: int, original_width: int, npatches: int, num_patch_height: int, num_patch_width: int, ) -> Tuple[int, int]: current_height = npatches * num_patch_height current_width = npatches * num_patch_width aspect_ratio: float = original_width / original_height current_aspect_ratio: float = current_width / current_height if aspect_ratio > current_aspect_ratio: new_height = (original_height * current_width) // original_width padding = (current_height - new_height) // 2 current_height = current_height - (2 * padding) else: new_width = (original_width * current_height) // original_height padding = (current_width - new_width) // 2 current_width = current_width - (2 * padding) unpadded_features = current_height * current_width newline_features = current_height return (unpadded_features, newline_features) def get_number_of_features(height: int, width: int, config) -> int: # From config # Hardcoded for CLIP for now # image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] image_grid_pinpoints = config.image_grid_pinpoints image_size = config.vision_config.image_size patch_size = config.vision_config.patch_size assert image_size % patch_size == 0 npatches = image_size // patch_size # Dimensions are intentionally swapped to be bug-compatible with # upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59 num_patch_width, num_patch_height = get_anyres_image_grid_shape( [height, width], image_grid_pinpoints, image_size, ) unpadded_features, newline_features = get_unpadded_features( height, width, npatches, num_patch_height, num_patch_width ) # The base patch covers the entire image base_features = npatches**2 return unpadded_features + newline_features + base_features class VlmCausalLMBatch(CausalLMBatch): pixel_values: Optional[List[torch.Tensor]] pixel_attention_mask: Optional[List[torch.Tensor]] image_sizes: Optional[List[Tuple[int, int]]] @classmethod def from_tokenized( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, batch_tokenized_inputs, dtype: torch.dtype, device: torch.device, is_warmup: bool = False, ) -> "VlmCausalLMBatch": dbg_trace('FROM_PB', f'num_reqs:{len(pb.requests)}') requests = [CausalLMRequest.from_pb(idx, req, tokenizer) for idx, req in enumerate(pb.requests)] max_input_length = max(r.data.truncate for r in requests) max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests) # TODO: Add support for sparse batches top_n_tokens = [r.top_n_tokens for r in pb.requests] top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64) # TODO: by tokenizing all inputs at once we loose information on actual input lengths # this means that we cannot shift inputs to the left after a long input sequence # was filtered out new_bs = round_up(PREFILL_WARMUP_BATCH_SIZE_LIST, len(requests)) parameters = [r.parameters for r in pb.requests] # append the dummy parameters for dummy request parameters = pad_next_token_chooser_parameters(parameters, new_bs) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( pb=parameters, dtype=dtype, device=device, tokenizer=tokenizer, quantization_enabled=hq_env.is_quantization_enabled, ) tokenized_inputs = batch_tokenized_inputs input_len = tokenized_inputs["input_ids"].shape[1] bucket_size = max_input_length left_padding = max_input_length - input_len if is_warmup is False: if input_len < max_input_length : rounded_seq_len = round_up(PREFILL_WARMUP_SEQLEN_LIST, input_len + 1) if rounded_seq_len <= max_input_length: bucket_size = rounded_seq_len - 1 else: bucket_size = max_input_length - 1 left_padding = bucket_size - input_len input_ids = tokenized_inputs["input_ids"] attention_mask = tokenized_inputs["attention_mask"] # Allocate space for first token if left_padding > 0: input_ids = torch.nn.functional.pad( input_ids, (left_padding, 1), value=tokenizer.pad_token_id ) attention_mask = torch.nn.functional.pad( attention_mask, (left_padding, 1), value=0 ) all_input_ids = torch.nn.functional.pad( input_ids, (0, max_new_tokens), value=tokenizer.pad_token_id ).T.split(1, dim=1) # New input length after left padding input_len = bucket_size for r in requests: r.input_length = input_len r.prefix_offset = input_len - 5 r.read_offset = input_len r.all_input_ids = all_input_ids[r.idx] input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) htorch.core.mark_step() return cls( batch_id=pb.id, requests=requests, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=None, merged_kv_cache=False, next_token_chooser=next_token_chooser, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, input_length=input_len, ) @classmethod def batch_tokenized_inputs( cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config, is_warmup ): # Process images first. We need all of them so that the processor # can make the image splits the same size. And we need the final # sizes to insert correct number of image tokens. images = [] for r in requests: for chunk in r.input_chunks.chunks: chunk_type = chunk.WhichOneof("chunk") if chunk_type == "text": pass elif chunk_type == "image": image = Image.open(BytesIO(chunk.image.data)) if config.model_type == "llava_next": images.append(image) else: images.append([image]) else: raise RuntimeError(f"Invalid chunk type {chunk_type}") image_inputs = None if images: image_inputs = processor.image_processor(images, return_tensors="pt") batch_inputs = [] max_truncation = 0 image_id = 0 for r in requests: full_text = "" for chunk in r.input_chunks.chunks: chunk_type = chunk.WhichOneof("chunk") if chunk_type == "text": full_text += chunk.text elif chunk_type == "image": full_text += image_text_replacement( processor, image_inputs, config, image_id ) image_id += 1 full_text = image_text_replacement_fixup(config, full_text) batch_inputs.append(full_text) max_truncation = max(max_truncation, r.truncate) missing_inputs = 0 dummy_images = None if is_warmup is False: new_bs = round_up(PREFILL_WARMUP_BATCH_SIZE_LIST, len(requests)) missing_inputs = new_bs - len(requests) if missing_inputs > 0: dummy_inputs = [] if len(batch_inputs) > 0: dummy_inputs = [batch_inputs[0]] * missing_inputs batch_inputs += dummy_inputs batch_tokenized_inputs = tokenizer( batch_inputs, truncation=True, max_length=max_truncation, add_special_tokens=not config.model_type == "paligemma", return_tensors="pt", padding="longest", return_token_type_ids=False, ) if missing_inputs > 0 and image_inputs is not None: dummy_shape = list(image_inputs['pixel_values'].shape) dummy_shape[0] = missing_inputs dummy_images = torch.rand(dummy_shape) new_image_inputs = { "pixel_values": torch.cat( (image_inputs['pixel_values'], dummy_images), dim=0 ), } if "pixel_attention_mask" in image_inputs: dummy_shape = list(image_inputs['pixel_attention_mask'].shape) dummy_shape[0] = missing_inputs dummy_attention = torch.zeros(dummy_shape) new_image_inputs["pixel_attention_mask"] = torch.cat( (image_inputs["pixel_attention_mask"], dummy_attention), dim=0 ) if "image_sizes" in image_inputs: dummy_shape = list(image_inputs['image_sizes'].shape) dummy_shape[0] = missing_inputs dummy_sizes = torch.randint(dummy_shape) new_image_inputs["image_sizes"] = torch.cat( (image_inputs["image_sizes"], dummy_sizes), dim=0 ) image_inputs = new_image_inputs return batch_tokenized_inputs, image_inputs @classmethod def from_pb_processor( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, processor, config, dtype: torch.dtype, device: torch.device, is_warmup: bool = False, ) -> "VlmCausalLMBatch": batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs( pb.requests, tokenizer, processor, config, is_warmup ) batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) if image_inputs is not None: batch.pixel_values = image_inputs["pixel_values"].to(device=device) if "pixel_attention_mask" in image_inputs: batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to( device=device ) else: batch.pixel_attention_mask = None if "image_sizes" in image_inputs: batch.image_sizes = image_inputs["image_sizes"].to(device=device) else: batch.image_sizes = None else: batch.pixel_values = None batch.pixel_attention_mask = None batch.image_sizes = None return batch @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["CausalLMBatch"], pad_token_id: int = 0, is_warmup:bool = False) -> "CausalLMBatch": return cls.recombine(batches, pad_token_id, is_warmup) @classmethod def recombine(cls, batches: List["VlmCausalLMBatch"], pad_token_id: int, is_warmup: bool =False) -> "VlmCausalLMBatch": if not all(b.past_key_values is not None for b in batches): raise ValueError("KV cache not allocated! Cannot recombine before prefill!") total_requests = sum(len(b) for b in batches) new_bs = total_requests if is_warmup is False : new_bs = round_up(DECODE_WARMUP_BATCH_SIZE_LIST, total_requests) batch_id = batches[0].batch_id device = batches[0].input_ids.device input_lengths = [b.input_length for b in batches] max_input_length = max(input_lengths) offsets = [max_input_length - b.input_length for b in batches] cur_padding = [b.right_padding for b in batches] # For prefill there is a space allocated only for first token # Need to add padding to the max total tokens before first decode moves_needed = [total_requests - len(b) if b.batch_size == new_bs else total_requests for b in batches] dst_batch_idx = min(enumerate(moves_needed), key=lambda idx_val: idx_val[1])[0] reshape = (batches[dst_batch_idx].batch_size < new_bs) # TODO: Add support for changing max seq len, i.e. due to output length bucketing # FIXME: max_seq_len for non optimized code if len(batches) > 1: scenario = 'CONCAT' elif reshape: scenario = 'RESHAPE' elif cur_padding[dst_batch_idx] <= 0: scenario = 'SHIFT' offsets = [biggest_single_chunk(b.max_input_length - max_input_length) for b in batches] max_input_length = max_input_length + offsets[dst_batch_idx] else: # Nothing to do return batches[0] dbg_trace( scenario, f'bs:{[b.batch_size for b in batches]}->{new_bs}' f' reqs:{[len(b) for b in batches]}' f' offsets:{offsets}' f' input_lengths:{input_lengths}' f' cur_padding:{cur_padding}' f' dst_batch:{dst_batch_idx}') grouped_requests = [[req for req in batch.requests] for batch in batches] flat_requests = list(itertools.chain(*grouped_requests)) for i in range(len(batches)): target_bs = new_bs if i == dst_batch_idx else batches[i].batch_size batches[i].merge_kv_cache_if_needed(target_bs, offsets[i]) batches[i].realign(target_bs, offsets[i], pad_token_id) batches[i].split_kv_cache_if_needed(i == dst_batch_idx) batches[dst_batch_idx].expand_bs(new_bs) batches[dst_batch_idx].move_data([batches[i] for i in range(len(batches)) if i != dst_batch_idx]) top_n_tokens = [r.data.top_n_tokens for r in flat_requests] top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64) parameters = [r.data.parameters for r in flat_requests] # append the dummy parameters for dummy requests batch_size = batches[dst_batch_idx].batch_size parameters = pad_next_token_chooser_parameters(parameters, batch_size) # update past grammar states fsm_grammar_states = [0] * batch_size for batch in batches: for i, req in enumerate(batch.requests): fsm_grammar_states[req.idx] = batch.next_token_chooser.fsm_grammar_states[i] next_token_chooser = HeterogeneousNextTokenChooser.from_pb( parameters, batches[dst_batch_idx].next_token_chooser.dtype, batches[dst_batch_idx].next_token_chooser.device, batches[dst_batch_idx].next_token_chooser.tokenizer, fsm_grammar_states, quantization_enabled=hq_env.is_quantization_enabled, ) input_ids = batches[dst_batch_idx].input_ids attention_mask = batches[dst_batch_idx].attention_mask position_ids = batches[dst_batch_idx].position_ids past_key_values = batches[dst_batch_idx].past_key_values input_length = max_input_length htorch.core.mark_step() return cls( batch_id=batch_id, requests=flat_requests, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, merged_kv_cache=False, next_token_chooser=next_token_chooser, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, input_length=input_length, ) class VlmCausalLM(Model): def __init__( self, model_class, model_id: str, *, processor_class=AutoProcessor, processor_kwargs=None, batch_class=VlmCausalLMBatch, revision, quantize: Optional[str] = None, dtype, trust_remote_code: bool, **kwargs, ): adapt_transformers_to_gaudi() if processor_kwargs is None: processor_kwargs = {} self.processor = processor_class.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, **processor_kwargs, ) self.batch_class = batch_class self.prev_bs = 0 self.quantize = quantize # Create tokenizer tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) make_tokenizer_optional(tokenizer) # Create model world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) dtype = torch.bfloat16 if dtype is None else dtype device = torch.device("hpu") if hq_env.is_quantization_enabled: htorch.core.hpu_set_env() if world_size > 1: model = self.get_deepspeed_model( model_class, model_id, dtype, revision ) model = hq_env.prepare_model_for_quantization(model) else: get_repo_root(model_id) # Check support for rope scaling model_kwargs = {} config = AutoConfig.from_pretrained( model_id ) if hasattr(config, "rope_scaling"): model_kwargs["rope_scaling"] = self.get_rope_scaling() model = model_class.from_pretrained( model_id, revision=revision, torch_dtype=dtype, trust_remote_code=trust_remote_code, **model_kwargs ) model = hq_env.prepare_model_for_quantization(model) model = model.eval().to(device) self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true" and LAZY_MODE == 1 self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true" model = remove_kv_cache_from_output(model) if self.enable_hpu_graph: from habana_frameworks.torch.hpu import wrap_in_hpu_graph model = wrap_in_hpu_graph(model, disable_tensor_cache=True) else: if LAZY_MODE == 0: # It is said that "keep_input_mutations" is safe for inference to be done dbg_trace( "TORCH COMPILE", f'Torch compiling of model') model.model = torch.compile(model.model, backend="hpu_backend", options={"keep_input_mutations": True}) model = hq_env.setup_quantization(model) if model.config.model_type not in MODELS_OPTIMIZED_WITH_STATIC_SHAPES: raise ValueError(f"Model type {model.config.model_type} is not supported!") if tokenizer.pad_token_id is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None: if isinstance(model.config.eos_token_id, int): tokenizer.pad_token_id = model.config.eos_token_id elif isinstance(model.config.eos_token_id, list): tokenizer.pad_token_id = model.config.eos_token_id[0] else: raise ValueError( f"{type(model.config.eos_token_id)} type of eos_token_id in the model's config is not supported for tokenizer.pad_token_id" ) elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) self.kwargs = { "use_cache": True, "return_dict": True, } if model.config.model_type in ["llava_next"]: self.kwargs["attn_softmax_bf16"] = True self.kwargs["trim_logits"] = True if os.getenv("USE_FLASH_ATTENTION", "false").lower() == "true": self.kwargs["use_flash_attention"] = True if os.getenv("FLASH_ATTENTION_RECOMPUTE", "false").lower() == "true": self.kwargs["flash_attention_recompute"] = True self.speculate = get_speculate() super(VlmCausalLM, self).__init__( model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, ) # Create profiler ranks_to_profile = [int(val) for val in os.getenv("PROF_RANKS", "0").split(',')] record_shapes = os.getenv("PROF_RECORD_SHAPES", "false").lower() == "true" output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile") self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0")) if rank in ranks_to_profile else 0 self.profiling_steps = int(os.getenv("PROF_STEP", "0")) if rank in ranks_to_profile else 0 self.profiling_wait_steps = int(os.getenv("PROF_WAITSTEP", "0")) if self.profiling_steps > 0: self.hb_profiler = HabanaProfile( wait=self.profiling_wait_steps, warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir, record_shapes=record_shapes ) self.hb_profiler.start() else: self.hb_profiler = None self.step = 0 @property def batch_type(self) -> Type[VlmCausalLMBatch]: return self.batch_class def max_past(self) -> Optional[int]: return getattr(self.model.text_model, "max_past", None) def get_deepspeed_model( self, model_class, model_id: str, dtype: torch.dtype, revision: Optional[str] = None ) -> torch.nn.Module: import deepspeed from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu world_size, rank, local_rank = initialize_distributed_hpu() model_kwargs = { "revision": revision } # Initialize process(es) for DeepSpeed deepspeed.init_distributed(dist_backend="hccl") logger.info( "DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank) ) config = AutoConfig.from_pretrained(model_id, **model_kwargs) load_to_meta = model_on_meta(config) # Check support for rope scaling if hasattr(config, "rope_scaling"): config.rope_scaling = self.get_rope_scaling() model_kwargs["rope_scaling"] = self.get_rope_scaling() if load_to_meta: # Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load with deepspeed.OnDevice(dtype=dtype, device="meta"): model = model_class.from_config(config, torch_dtype=dtype) else: get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK")) # TODO: revisit placement on CPU when auto-injection is possible with deepspeed.OnDevice(dtype=dtype, device="cpu"): model = model_class.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs) model = model.eval() # Initialize the model ds_inference_kwargs = {"dtype": dtype} ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size} ds_inference_kwargs["enable_cuda_graph"] = False ds_inference_kwargs["injection_policy"] = get_ds_injection_policy(model.language_model.config) if load_to_meta: # model loaded to meta is managed differently checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w") write_checkpoints_json(model_id, local_rank, checkpoints_json) ds_inference_kwargs["checkpoint"] = checkpoints_json.name model = deepspeed.init_inference(model, **ds_inference_kwargs) return model.module def get_rope_scaling(self) -> Optional[Dict]: rope_scaling = os.getenv("ROPE_SCALING", None) if rope_scaling is None: return None rope_factor = float(os.getenv("ROPE_FACTOR", 1.0)) return { 'type': rope_scaling, 'factor': float(rope_factor) } def decode(self, generated_ids: List[int]) -> str: return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) def decode_token( self, all_input_ids: List[int], prefix_offset: int = 0, read_offset: int = 0, ) -> Tuple[str, int, int]: if is_tokenizer_transparent(self.tokenizer): new_text = self.tokenizer.decode(all_input_ids[read_offset:], skip_special_tokens=False) return new_text, read_offset, len(all_input_ids) else: return super().decode_token(all_input_ids, prefix_offset, read_offset) def forward( self, input_ids, attention_mask, position_ids, token_idx, past_key_values: Optional[List[Tuple]] = None, pixel_values: Optional[List[torch.Tensor]] = None, image_sizes: Optional[List[Tuple[int, int]]] = None, bypass_hpu_graph: Optional[bool] = None, ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: # Model Forward kwargs = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "token_idx": token_idx, "pixel_values": pixel_values, "image_sizes": image_sizes, } hpu_kwargs = {} # Optimum Habana got "lazy_mode" key-val only supported for llama type of models if self.model.config.model_type == "llama" : hpu_kwargs["lazy_mode"] = LAZY_MODE == 1 if self.has_position_ids: kwargs["position_ids"] = position_ids if bypass_hpu_graph != None: hpu_kwargs["bypass_hpu_graphs"] = bypass_hpu_graph kwargs.update(self.kwargs) model_inputs = self.model.prepare_inputs_for_generation(**kwargs) if past_key_values is not None: return self.model.forward(**model_inputs, **hpu_kwargs) else: outputs = self.model.forward(**model_inputs, **hpu_kwargs) return outputs.logits, outputs.past_key_values @tracer.start_as_current_span("generate_token") def generate_token( self, batches: List[VlmCausalLMBatch], is_warmup: bool = False ) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]: start = time.time_ns() # Results generations: List[Generation] = [] prev_batches = [] requests_to_generate = [] # In order to pipeline any actions on CPU we perform the operation in 3 main stages: # Stage 1. Collect next token ids of any previously started generations for batch_id, batch in enumerate(batches): if batch.logits is not None: logits = batch.logits past = batch.past prefill = batch.past_key_values is None if prefill: # no right padding for prefill token_idx_scalar = batch.attention_mask.shape[-1] - 1 token_idx = torch.tensor(token_idx_scalar).to(self.device) else: token_idx_scalar = batch.attention_mask.shape[-1] - batch.right_padding token_idx = torch.tensor(token_idx_scalar).to(self.device) # Select next token input_length = batch.input_length if logits.shape[-2] > 1: next_token_ids, next_token_logprobs, logprobs, _, _ = batch.next_token_chooser( batch.input_ids, logits[:, input_length - 1: input_length, :].squeeze(-2), self.speculate ) else: next_token_ids, next_token_logprobs, logprobs, _, _ = batch.next_token_chooser( batch.input_ids, logits.squeeze(-2), self.speculate ) # Speculation is not active for causal accepted_ids = torch.ones_like(batch.input_ids)[:, 0] batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids, ) prev_batches.append({ 'next_token_ids': next_token_ids, 'next_token_logprobs': next_token_logprobs, }) for req_idx, req in enumerate(batch.requests): requests_to_generate.append({ 'req': req, 'prev_req_idx': req.idx, 'batch_id': batch_id, 'seed': batch.next_token_chooser.seeds[req_idx], 'do_sample': batch.next_token_chooser.do_sample[req_idx], 'top_n_tokens': batch.top_n_tokens[req_idx], 'top_token_ids': batch_top_token_ids[req_idx], 'top_token_logprobs': batch_top_token_logprobs[req_idx], 'grammar_state': batch.next_token_chooser.fsm_grammar_states[req.idx], }) htorch.core.mark_step() # Add new token into input_ids batch.input_ids.index_copy_(1, token_idx, next_token_ids.unsqueeze(1)) # Update attention_mask as we added a new token to input_ids batch.attention_mask.index_fill_(1, token_idx, 1) # Adjust lengths batch.input_length += 1 # Update position_ids if prefill: batch.position_ids = torch.index_select(batch.position_ids, 1, token_idx - 1) + 1 else: batch.position_ids += 1 # Update past key values if prefill: batch.past_key_values = past htorch.core.mark_step() # Stage 2. Prepare new batch for speculative scheduling if len(batches) > 1: batch = self.batch_type.concatenate(batches, self.tokenizer.pad_token_id, is_warmup) else: batch = batches[0] prefill = batch.past_key_values is None # Check if we need to do any bookkeeping first if not prefill: batch = batch.__class__.recombine([batch], self.tokenizer.pad_token_id, is_warmup) scenario = 'PREFILL' if prefill else 'GENERATE' if self.enable_hpu_graph and self.limit_hpu_graph and round_up(DECODE_WARMUP_BATCH_SIZE_LIST, batch.batch_size) != self.prev_bs: self.model.clear_cache() self.prev_bs = round_up(DECODE_WARMUP_BATCH_SIZE_LIST, batch.batch_size) dbg_trace( scenario, f'bs:{batch.batch_size} num_reqs:{len(batch.requests)} seq_len:{batch.seq_length} padding:{batch.right_padding}') #assert batch.right_padding > 0, 'No more room for next token!' # Execute batch if prefill: # no right padding for prefill token_idx = torch.tensor(batch.attention_mask.shape[-1] - 1).to(self.device) batch.logits, batch.past = self.forward( batch.input_ids, batch.attention_mask, batch.position_ids, token_idx, batch.past_key_values, batch.pixel_values, batch.image_sizes, bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None, ) elif all([req.stopping_criteria.max_new_tokens == 1 for req in batch.requests]): # Don't schedule next forward if max_new_tokens for all requests equals 1 # - we've already generated the first and only needed token in the prefill phase pass else: token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device) batch.logits = self.forward( batch.input_ids, batch.attention_mask, batch.position_ids, token_idx, batch.past_key_values, bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None, ) htorch.core.mark_step() start_decode = time.time_ns() # Stage 3. Finish and return previous generations stopped = len(requests_to_generate) > 0 for prev_batch in prev_batches: prev_batch['next_token_logprobs'] = prev_batch['next_token_logprobs'].tolist() prev_batch['next_token_ids_cpu'] = prev_batch['next_token_ids'].cpu() htorch.core.mark_step() for req_data in requests_to_generate: req = req_data['req'] i = req_data['prev_req_idx'] prev_batch_id = req_data['batch_id'] assert len(prev_batches) > prev_batch_id next_token_ids_cpu = prev_batches[prev_batch_id]['next_token_ids_cpu'] next_token_logprobs = prev_batches[prev_batch_id]['next_token_logprobs'] request = req.data input_length = req.input_length prefix_offset = req.prefix_offset read_offset = req.read_offset do_sample = req_data['do_sample'] seed = req_data['seed'] stopping_criteria = req.stopping_criteria all_input_ids = req.all_input_ids next_token_id = next_token_ids_cpu[i] next_token_logprob = next_token_logprobs[i] top_n_tokens = req_data['top_n_tokens'] top_token_ids = req_data['top_token_ids'] top_token_logprobs = req_data['top_token_logprobs'] grammar_state = req_data['grammar_state'] # Append next token to all tokens all_input_ids[input_length] = next_token_id new_input_length = input_length + 1 # Generated token if is_tokenizer_transparent(self.tokenizer) and len(stopping_criteria.stop_sequence_criterias) == 0: next_token_text = '' else: next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids[0:new_input_length, 0], prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria( next_token_id, next_token_text, ) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Decode generated tokens if is_tokenizer_transparent(self.tokenizer): output_text = None else: output_text = self.decode( all_input_ids[new_input_length - stopping_criteria.current_tokens: new_input_length, 0] ) generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed if do_sample else None, ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: # Remove generated token to only have prefill and add nan for first prompt token prefill_logprobs = [float("nan")] + next_token_logprobs prefill_token_ids = all_input_ids[0: new_input_length - 1] prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_tokens = Tokens( prefill_token_ids, prefill_logprobs, prefill_texts, is_special=[], ) else: prefill_tokens = None if top_n_tokens > 0: all_top_tokens = [] for top_token_ids, top_token_logprobs in zip( top_token_ids, top_token_logprobs ): toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) all_top_tokens.append(top_tokens) top_tokens = all_top_tokens else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id], [next_token_logprob], [next_token_text], [next_token_id in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) batch.next_token_chooser = ( batch.next_token_chooser.advance_grammar_single_with_past_state( req.idx, next_token_id, grammar_state ) ) req.all_input_ids = all_input_ids req.input_length = new_input_length req.prefix_offset = prefix_offset req.read_offset = read_offset htorch.core.mark_step() self.step = self.step + 1 if self.hb_profiler is not None: if self.step > self.profiling_wait_steps + self.profiling_warmup_steps + self.profiling_steps: self.hb_profiler.stop() else: self.hb_profiler.step() forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch if not stopped else None, (forward_ns, decode_ns) def batch_from_pb(self, batch, is_warmup): return VlmCausalLMBatch.from_pb_processor( batch, self.tokenizer, self.processor, self.model.config, self.dtype, self.device, is_warmup ) def generate_warmup_batch(self, request, seq_len, batch_size, is_warmup): batch = copy.deepcopy(request.batch) for req in batch.requests: req.truncate = seq_len for i in range(len(batch.requests) - batch_size): batch.requests.pop() return self.batch_from_pb(batch, is_warmup) def warmup(self, request) -> None: is_warmup = True batch = self.batch_from_pb(request.batch, is_warmup) try: # max prefill batch size warmup _, prefill_batch, _ = self.generate_token([batch], is_warmup) except: raise RuntimeError( f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. " f"You need to decrease `--max-batch-prefill-tokens`" ) global BASE_IMAGE_TOKENS, MAX_TOTAL_TOKENS, MAX_BATCH_TOTAL_TOKENS, PREFILL_WARMUP_BATCH_SIZE_LIST, PREFILL_WARMUP_SEQLEN_LIST, DECODE_WARMUP_BATCH_SIZE_LIST max_input_length = batch.input_ids.shape[1] max_prefill_batch_size = batch.input_ids.shape[0] PREFILL_WARMUP_BATCH_SIZE_LIST = [] batch_size = 1 while batch_size <= max_prefill_batch_size: PREFILL_WARMUP_BATCH_SIZE_LIST.append(batch_size) batch_size = batch_size * 2 if PREFILL_WARMUP_BATCH_SIZE_LIST[-1] < max_prefill_batch_size : PREFILL_WARMUP_BATCH_SIZE_LIST.append(max_prefill_batch_size) seq_len = BASE_IMAGE_TOKENS PREFILL_WARMUP_SEQLEN_LIST = [] i = 0 while seq_len <= max_input_length: PREFILL_WARMUP_SEQLEN_LIST.append(seq_len) seq_len += PAD_SEQUENCE_TO_MULTIPLE_OF*(2**i) i += 1 if PREFILL_WARMUP_SEQLEN_LIST[-1] < max_input_length: PREFILL_WARMUP_SEQLEN_LIST.append(max_input_length) #Prefill and decode warmup DECODE_WARMUP_BATCH_SIZE_LIST = [] prefill_batch = None decode_batch = None try: for batch_size in PREFILL_WARMUP_BATCH_SIZE_LIST : for seq_len in PREFILL_WARMUP_SEQLEN_LIST : batch = self.generate_warmup_batch(request, seq_len, batch_size, is_warmup) _, prefill_batch, _ = self.generate_token([batch], is_warmup) _, decode_batch, _ = self.generate_token([prefill_batch], is_warmup) DECODE_WARMUP_BATCH_SIZE_LIST.append(batch_size) except: raise RuntimeError( f"Not enough memory to handle following prefill and decode warmup." f"Prefill batch size list:{PREFILL_WARMUP_BATCH_SIZE_LIST}" f"Prefill sequence length list:{PREFILL_WARMUP_SEQLEN_LIST}" f"Decode batch size list:{DECODE_WARMUP_BATCH_SIZE_LIST}" f"You need to decrease `--max-batch-prefill-tokens`" ) mem_stats = get_hpu_memory_stats(self.device) logger.info( f"\nFollowing prefill and decode warmup successfully.\n" f"Prefill batch size list:{PREFILL_WARMUP_BATCH_SIZE_LIST}\n" f"Prefill sequence length list:{PREFILL_WARMUP_SEQLEN_LIST}\n" f"Decode batch size list:{DECODE_WARMUP_BATCH_SIZE_LIST}\n" f"Memory stats: {mem_stats} " ) max_decode_batch_size = math.floor(MAX_BATCH_TOTAL_TOKENS / MAX_TOTAL_TOKENS) batch_size = max_prefill_batch_size * 2 # Decode warmup with bigger batch_size try: if DECODE_WARMUP_BATCH_SIZE_LIST[-1] < max_decode_batch_size and batch_size <= max_decode_batch_size: batches = [] for i in range(int(batch_size/max_prefill_batch_size)) : batch = self.generate_warmup_batch(request, PREFILL_WARMUP_SEQLEN_LIST[0], DECODE_WARMUP_BATCH_SIZE_LIST[-1], is_warmup) _, prefill_batch, _ = self.generate_token([batch], is_warmup) batches.append(prefill_batch) while batch_size <= max_decode_batch_size: _, decode_batch, _ = self.generate_token(batches, is_warmup) DECODE_WARMUP_BATCH_SIZE_LIST.append(batch_size) batch_size = batch_size * 2 batches.clear() for i in range(int(batch_size/max_prefill_batch_size)) : batch = self.generate_warmup_batch(request, PREFILL_WARMUP_SEQLEN_LIST[0], DECODE_WARMUP_BATCH_SIZE_LIST[-1], is_warmup) _, prefill_batch, _ = self.generate_token([batch], is_warmup) batches.append(prefill_batch) batches.clear() if DECODE_WARMUP_BATCH_SIZE_LIST[-1] < max_decode_batch_size: max_decode_batch_size = math.floor( max_decode_batch_size / 2) * 2 batch_size = max_decode_batch_size for i in range(int(max_decode_batch_size / 2)) : batch = self.generate_warmup_batch(request, PREFILL_WARMUP_SEQLEN_LIST[0], 2, is_warmup) _, prefill_batch, _ = self.generate_token([batch], is_warmup) batches.append(prefill_batch) _, decode_batch, _ = self.generate_token(batches, is_warmup) DECODE_WARMUP_BATCH_SIZE_LIST.append(max_decode_batch_size) max_batch_total_tokens = max_decode_batch_size * MAX_TOTAL_TOKENS MAX_BATCH_TOTAL_TOKENS = max_batch_total_tokens except : raise RuntimeError( f"Not enough memory to handle batch_size({batch_size}) decode warmup." f"Decode batch size list:{DECODE_WARMUP_BATCH_SIZE_LIST}" f"max_decode_batch_size is {max_decode_batch_size}" f"You need to decrease env `MAX_BATCH_TOTAL_TOKENS` or '--max_batch_total_tokens'" ) mem_stats = get_hpu_memory_stats(self.device) logger.info( f"\nFollowing decode warmup successfully.\n" f"Decode batch size list:{DECODE_WARMUP_BATCH_SIZE_LIST}\n" f"Memory stats: {mem_stats}" ) return MAX_BATCH_TOTAL_TOKENS