pytest_plugins = ["fixtures.neuron.service", "fixtures.neuron.export_models"]
# ruff: noqa: E402
from _pytest.fixtures import SubRequest
import requests


class SessionTimeoutFix(requests.Session):
    def request(self, *args, **kwargs):
        timeout = kwargs.pop("timeout", 120)
        return super().request(*args, **kwargs, timeout=timeout)


requests.sessions.Session = SessionTimeoutFix

import warnings
import asyncio
import contextlib
import json
import math
import os
import random
import subprocess
import sys
import tempfile
import time
import docker
import pytest
import base64

from pathlib import Path
from typing import Dict, List, Optional
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from docker.errors import NotFound
from syrupy.extensions.json import JSONSnapshotExtension

from text_generation import AsyncClient
from text_generation.types import (
    BestOfSequence,
    Message,
    ChatComplete,
    ChatCompletionChunk,
    ChatCompletionComplete,
    Completion,
    Details,
    Grammar,
    InputToken,
    Response,
    Token,
)

DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HF_TOKEN = os.getenv("HF_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
DOCKER_DEVICES = os.getenv("DOCKER_DEVICES")


def pytest_addoption(parser):
    parser.addoption(
        "--release", action="store_true", default=False, help="run release tests"
    )
    parser.addoption(
        "--neuron", action="store_true", default=False, help="run neuron tests"
    )


def pytest_configure(config):
    config.addinivalue_line("markers", "release: mark test as a release-only test")
    config.addinivalue_line("markers", "neuron: mark test as a neuron test")


def pytest_collection_modifyitems(config, items):
    selectors = []
    if not config.getoption("--release"):
        # --release not given in cli: skip release tests
        def skip_release(item):
            if "release" in item.keywords:
                item.add_marker(pytest.mark.skip(reason="need --release option to run"))

        selectors.append(skip_release)
    if config.getoption("--neuron"):

        def skip_not_neuron(item):
            if "neuron" not in item.keywords:
                item.add_marker(
                    pytest.mark.skip(reason="incompatible with --neuron option")
                )

        selectors.append(skip_not_neuron)
    else:

        def skip_neuron(item):
            if "neuron" in item.keywords:
                item.add_marker(pytest.mark.skip(reason="requires --neuron to run"))

        selectors.append(skip_neuron)
    for item in items:
        for selector in selectors:
            selector(item)


@pytest.fixture(autouse=True)
def container_log(request: SubRequest):
    error_log = request.getfixturevalue("error_log")
    assert error_log is not None
    yield
    if request.session.testsfailed:
        error_log.seek(0)
        print(error_log.read(), file=sys.stderr)
    else:
        error_log.truncate(0)
        error_log.seek(0)


class ResponseComparator(JSONSnapshotExtension):
    rtol = 0.2
    ignore_logprob = False

    def serialize(
        self,
        data,
        *,
        include=None,
        exclude=None,
        matcher=None,
    ):
        if (
            isinstance(data, Response)
            or isinstance(data, ChatComplete)
            or isinstance(data, ChatCompletionChunk)
            or isinstance(data, ChatCompletionComplete)
        ):
            data = data.model_dump()

        if isinstance(data, List):
            data = [d.model_dump() for d in data]

        data = self._filter(
            data=data,
            depth=0,
            path=(),
            exclude=exclude,
            include=include,
            matcher=matcher,
        )
        return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n"

    def matches(
        self,
        *,
        serialized_data,
        snapshot_data,
    ) -> bool:
        def convert_data(data):
            data = json.loads(data)
            return _convert_data(data)

        def _convert_data(data):
            if isinstance(data, Dict):
                if "choices" in data:
                    data["choices"] = list(
                        sorted(data["choices"], key=lambda x: x["index"])
                    )
                    choices = data["choices"]
                    if isinstance(choices, List) and len(choices) >= 1:
                        if "delta" in choices[0]:
                            return ChatCompletionChunk(**data)
                        if "text" in choices[0]:
                            return Completion(**data)
                    return ChatComplete(**data)
                else:
                    return Response(**data)
            if isinstance(data, List):
                return [_convert_data(d) for d in data]
            raise NotImplementedError

        def eq_token(token: Token, other: Token) -> bool:
            return (
                token.id == other.id
                and token.text == other.text
                and (
                    self.ignore_logprob
                    or (token.logprob == other.logprob and token.logprob is None)
                    or math.isclose(token.logprob, other.logprob, rel_tol=self.rtol)
                )
                and token.special == other.special
            )

        def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
            try:
                return (
                    prefill_token.id == other.id
                    and prefill_token.text == other.text
                    and (
                        self.ignore_logprob
                        or math.isclose(
                            prefill_token.logprob,
                            other.logprob,
                            rel_tol=self.rtol,
                        )
                        if prefill_token.logprob is not None
                        else prefill_token.logprob == other.logprob
                    )
                )
            except TypeError:
                return False

        def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
            )

        def eq_details(details: Details, other: Details) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
                and (
                    len(details.best_of_sequences)
                    if details.best_of_sequences is not None
                    else 0
                )
                == (
                    len(other.best_of_sequences)
                    if other.best_of_sequences is not None
                    else 0
                )
                and (
                    all(
                        [
                            eq_best_of(d, o)
                            for d, o in zip(
                                details.best_of_sequences, other.best_of_sequences
                            )
                        ]
                    )
                    if details.best_of_sequences is not None
                    else details.best_of_sequences == other.best_of_sequences
                )
            )

        def eq_completion(response: Completion, other: Completion) -> bool:
            return response.choices[0].text == other.choices[0].text

        def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool:
            return (
                response.choices[0].message.content == other.choices[0].message.content
            )

        def eq_chat_complete_chunk(
            response: ChatCompletionChunk, other: ChatCompletionChunk
        ) -> bool:
            return response.choices[0].delta.content == other.choices[0].delta.content

        def eq_response(response: Response, other: Response) -> bool:
            return response.generated_text == other.generated_text and eq_details(
                response.details, other.details
            )

        serialized_data = convert_data(serialized_data)
        snapshot_data = convert_data(snapshot_data)

        if not isinstance(serialized_data, List):
            serialized_data = [serialized_data]
        if not isinstance(snapshot_data, List):
            snapshot_data = [snapshot_data]

        if isinstance(serialized_data[0], Completion):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatComplete):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatCompletionChunk):
            return len(snapshot_data) == len(serialized_data) and all(
                [
                    eq_chat_complete_chunk(r, o)
                    for r, o in zip(serialized_data, snapshot_data)
                ]
            )

        return len(snapshot_data) == len(serialized_data) and all(
            [eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)]
        )


class GenerousResponseComparator(ResponseComparator):
    # Needed for GPTQ with exllama which has serious numerical fluctuations.
    rtol = 0.75


class IgnoreLogProbResponseComparator(ResponseComparator):
    ignore_logprob = True


class LauncherHandle:
    def __init__(self, port: int, error_log):
        with warnings.catch_warnings(action="ignore"):
            self.client = AsyncClient(f"http://localhost:{port}", timeout=30)
        self.error_log = error_log

    def _inner_health(self):
        raise NotImplementedError

    async def health(self, timeout: int = 60):
        assert timeout > 0
        for _ in range(timeout):
            if not self._inner_health():
                self.error_log.seek(0)
                print(self.error_log.read(), file=sys.stderr)
                raise RuntimeError("Launcher crashed")

            try:
                await self.client.generate("test")
                return
            except (ClientConnectorError, ClientOSError, ServerDisconnectedError):
                time.sleep(1)
        self.error_log.seek(0)
        print(self.error_log.read(), file=sys.stderr)
        raise RuntimeError("Health check failed")


class ContainerLauncherHandle(LauncherHandle):
    def __init__(self, docker_client, container_name, port: int, error_log):
        super().__init__(port, error_log)
        self.docker_client = docker_client
        self.container_name = container_name

    def _inner_health(self) -> bool:
        container = self.docker_client.containers.get(self.container_name)
        return container.status in ["running", "created"]


class ProcessLauncherHandle(LauncherHandle):
    def __init__(self, process, port: int, error_log):
        super().__init__(port, error_log)
        self.process = process

    def _inner_health(self) -> bool:
        return self.process.poll() is None


@pytest.fixture
def response_snapshot(snapshot):
    return snapshot.use_extension(ResponseComparator)


@pytest.fixture
def generous_response_snapshot(snapshot):
    return snapshot.use_extension(GenerousResponseComparator)


@pytest.fixture
def ignore_logprob_response_snapshot(snapshot):
    return snapshot.use_extension(IgnoreLogProbResponseComparator)


@pytest.fixture(scope="session")
def error_log():
    with tempfile.TemporaryFile("w+") as tmp:
        yield tmp


@pytest.fixture(scope="session")
async def launcher(error_log):
    @contextlib.contextmanager
    def local_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
        kv_cache_dtype: Optional[str] = None,
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_input_tokens: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
        lora_adapters: Optional[List[str]] = None,
        cuda_graphs: Optional[List[int]] = None,
        attention: Optional[str] = None,
    ):
        port = random.randint(8000, 10_000)
        master_port = random.randint(10_000, 20_000)

        shard_uds_path = (
            f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server"
        )

        args = [
            "text-generation-launcher",
            "--model-id",
            model_id,
            "--port",
            str(port),
            "--master-port",
            str(master_port),
            "--shard-uds-path",
            shard_uds_path,
        ]

        env = os.environ

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
        if kv_cache_dtype is not None:
            args.append("--kv-cache-dtype")
            args.append(kv_cache_dtype)
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_input_tokens:
            args.append("--max-input-tokens")
            args.append(str(max_input_tokens))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
        if lora_adapters:
            args.append("--lora-adapters")
            args.append(",".join(lora_adapters))
        if cuda_graphs:
            args.append("--cuda-graphs")
            args.append(",".join(map(str, cuda_graphs)))

        print(" ".join(args), file=sys.stderr)

        env["LOG_LEVEL"] = "info,text_generation_router=debug"
        env["PREFILL_CHUNKING"] = "1"

        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"
        if attention is not None:
            env["ATTENTION"] = attention

            # with tempfile.TemporaryFile("w+") as tmp:
            # We'll output stdout/stderr to a temporary file. Using a pipe
            # cause the process to block until stdout is read.
        with subprocess.Popen(
            args,
            stdout=error_log,
            stderr=subprocess.STDOUT,
            env=env,
        ) as process:
            yield ProcessLauncherHandle(process, port, error_log=error_log)

            process.terminate()
            process.wait(60)

        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

    @contextlib.contextmanager
    def docker_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
        kv_cache_dtype: Optional[str] = None,
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
        lora_adapters: Optional[List[str]] = None,
        cuda_graphs: Optional[List[int]] = None,
        attention: Optional[str] = None,
    ):
        port = random.randint(8000, 10_000)

        args = ["--model-id", model_id, "--env"]

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
        if kv_cache_dtype is not None:
            args.append("--kv-cache-dtype")
            args.append(kv_cache_dtype)
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
        if lora_adapters:
            args.append("--lora-adapters")
            args.append(",".join(lora_adapters))
        if cuda_graphs:
            args.append("--cuda-graphs")
            args.append(",".join(map(str, cuda_graphs)))

        client = docker.from_env()

        container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"

        try:
            container = client.containers.get(container_name)
            container.stop()
            container.remove()
            container.wait()
        except NotFound:
            pass

        gpu_count = num_shard if num_shard is not None else 1

        env = {
            "LOG_LEVEL": "info,text_generation_router=debug",
            "PREFILL_CHUNKING": "1",
        }
        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"
        if attention is not None:
            env["ATTENTION"] = attention

        if HF_TOKEN is not None:
            env["HF_TOKEN"] = HF_TOKEN

        volumes = []
        if DOCKER_VOLUME:
            volumes = [f"{DOCKER_VOLUME}:/data"]

        if DOCKER_DEVICES:
            if DOCKER_DEVICES.lower() == "none":
                devices = []
            else:
                devices = DOCKER_DEVICES.strip().split(",")
            visible = os.getenv("ROCR_VISIBLE_DEVICES")
            if visible:
                env["ROCR_VISIBLE_DEVICES"] = visible
            device_requests = []
            if not devices:
                devices = None
            elif devices == ["nvidia.com/gpu=all"]:
                devices = None
                device_requests = [
                    docker.types.DeviceRequest(
                        driver="cdi",
                        # count=gpu_count,
                        device_ids=[f"nvidia.com/gpu={i}"],
                    )
                    for i in range(gpu_count)
                ]
        else:
            devices = None
            device_requests = [
                docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
            ]

        client.api.timeout = 1000
        container = client.containers.run(
            DOCKER_IMAGE,
            command=args,
            name=container_name,
            environment=env,
            auto_remove=False,
            detach=True,
            device_requests=device_requests,
            devices=devices,
            volumes=volumes,
            ports={"80/tcp": port},
            healthcheck={"timeout": int(180 * 1e9), "retries": 2},  # 60s
            shm_size="1G",
        )

        def pipe():
            for log in container.logs(stream=True):
                log = log.decode("utf-8")
                error_log.write(log)

        # Start looping to pipe the logs
        import threading

        t = threading.Thread(target=pipe, args=())
        t.start()

        try:
            yield ContainerLauncherHandle(
                client, container.name, port, error_log=error_log
            )

            if not use_flash_attention:
                del env["USE_FLASH_ATTENTION"]

            try:
                container.stop()
                container.wait()
            except NotFound:
                pass

        finally:
            try:
                container.remove()
            except Exception:
                pass

    if DOCKER_IMAGE is not None:
        return docker_launcher
    return local_launcher


@pytest.fixture(scope="module")
def generate_load():
    async def generate_load_inner(
        client: AsyncClient,
        prompt: str,
        max_new_tokens: int,
        n: int,
        seed: Optional[int] = None,
        grammar: Optional[Grammar] = None,
        stop_sequences: Optional[List[str]] = None,
    ) -> List[Response]:
        futures = [
            client.generate(
                prompt,
                max_new_tokens=max_new_tokens,
                decoder_input_details=True,
                seed=seed,
                grammar=grammar,
                stop_sequences=stop_sequences,
            )
            for _ in range(n)
        ]

        return await asyncio.gather(*futures)

    return generate_load_inner


@pytest.fixture(scope="module")
def generate_multi():
    async def generate_load_inner(
        client: AsyncClient,
        prompts: List[str],
        max_new_tokens: int,
        seed: Optional[int] = None,
    ) -> List[Response]:
        import numpy as np

        arange = np.arange(len(prompts))
        perm = np.random.permutation(arange)
        rperm = [-1] * len(perm)
        for i, p in enumerate(perm):
            rperm[p] = i

        shuffled_prompts = [prompts[p] for p in perm]
        futures = [
            client.chat(
                messages=[Message(role="user", content=prompt)],
                max_tokens=max_new_tokens,
                temperature=0,
                seed=seed,
            )
            for prompt in shuffled_prompts
        ]

        shuffled_responses = await asyncio.gather(*futures)
        responses = [shuffled_responses[p] for p in rperm]
        return responses

    return generate_load_inner


# TODO fix the server parsser to count inline image tokens correctly
@pytest.fixture
def chicken():
    path = Path(__file__).parent / "images" / "chicken_on_money.png"

    with open(path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
    return f"data:image/png;base64,{encoded_string.decode('utf-8')}"


@pytest.fixture
def cow_beach():
    path = Path(__file__).parent / "images" / "cow_beach.png"

    with open(path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
    return f"data:image/png;base64,{encoded_string.decode('utf-8')}"