# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. import asyncio import os import sys import torch import time import signal from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import List, Optional from text_generation_server.cache import Cache from text_generation_server.interceptor import ExceptionInterceptor from text_generation_server.models import Model, get_model_with_lora_adapters from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.models.globals import set_model_id from text_generation_server.models.globals import set_adapter_to_index from text_generation_server.utils.adapter import AdapterInfo try: from text_generation_server.models.pali_gemma import PaliGemmaBatch from text_generation_server.models.vlm_causal_lm import ( VlmCausalLMBatch, ) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch VLM_BATCH_TYPES = { PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch, } except (ImportError, NotImplementedError): # These imports can fail on CPU/Non flash. VLM_BATCH_TYPES = set() from text_generation_server.utils.version import is_driver_compatible, MIN_TGI_GAUDI_SYNAPSE_VERSION class SignalHandler: KEEP_PROCESSING = True def __init__(self): signal.signal(signal.SIGINT, self.exit_gracefully) signal.signal(signal.SIGTERM, self.exit_gracefully) def exit_gracefully(self, signum, frame): print(f"Exiting gracefully: Signal {signum}") self.KEEP_PROCESSING = False class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): def __init__( self, model: Model, cache: Cache, server_urls: List[str], ): self.cache = cache self.model = model # Quantize is resolved during model loading self.quantize = model.quantize self.server_urls = server_urls # For some reason, inference_mode does not work well with GLOO which we use on CPU # TODO: The inferecemode set messes up the autograd op dispatch. And results in aten::matmul # op not optimized issue. Will investigate further. # if model.device.type == "hpu": # Force inference mode for the lifetime of TextGenerationService # self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Info(self, request, context): return self.model.info async def Health(self, request, context): if self.model.device.type == "hpu": torch.zeros((2, 2)).to("hpu") return generate_pb2.HealthResponse() async def ServiceDiscovery(self, request, context): return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) async def ClearCache(self, request, context): if request.HasField("id"): self.cache.delete(request.id) else: self.cache.clear() return generate_pb2.ClearCacheResponse() async def FilterBatch(self, request, context): batch = self.cache.pop(request.batch_id) if batch is None: raise ValueError(f"Batch ID {request.batch_id} not found in cache.") filtered_batch = batch.filter(request.request_ids) self.cache.set(filtered_batch) return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) async def Warmup(self, request, context): max_supported_total_tokens = self.model.warmup(request) return generate_pb2.WarmupResponse(max_supported_total_tokens=max_supported_total_tokens) async def Prefill(self, request, context): start = time.time_ns() if ( self.model.batch_type in VLM_BATCH_TYPES ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb_processor( request.batch, self.model.tokenizer, self.model.processor, self.model.model.config, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) generations, next_batch, timings = self.model.generate_token([batch]) self.cache.set(next_batch) return generate_pb2.PrefillResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) async def Decode(self, request, context): start = time.time_ns() if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) == 0: raise ValueError("All batches are empty") generations, next_batch, timings = self.model.generate_token(batches) self.cache.set(next_batch) return generate_pb2.DecodeResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, concat_ns=None, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) def serve( model_id: str, lora_adapters: Optional[List[AdapterInfo]], revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], trust_remote_code: bool, uds_path: Path, max_input_tokens: int, ): async def serve_inner( model_id: str, lora_adapters: Optional[List[AdapterInfo]], revision: Optional[str], sharded: bool = False, quantize: Optional[str] = None, speculate: Optional[int] = None, dtype: Optional[str] = None, trust_remote_code: bool = False, ): if not is_driver_compatible(): logger.warning(f"Current Synapse version is lower than the minimum version supported: {MIN_TGI_GAUDI_SYNAPSE_VERSION}, this could result in failures") unix_socket_template = "unix://{}-{}" adapter_to_index = {} logger.info("Server:server_inner: sharded ={}".format(sharded)) if sharded: rank = int(os.environ["RANK"]) logger.info("Server:server_inner: rank ={}".format(rank)) server_urls = [ unix_socket_template.format(uds_path, rank) for rank in range(int(os.environ["WORLD_SIZE"])) ] local_url = server_urls[int(os.environ["RANK"])] else: local_url = unix_socket_template.format(uds_path, 0) server_urls = [local_url] logger.info("Server:server_inner: data type = {}, local_url = {}".format(dtype, local_url)) if dtype == "bfloat16" or None: data_type = torch.bfloat16 else: data_type = torch.float if revision == "None": revision = None try: model = get_model_with_lora_adapters( model_id, lora_adapters, revision, sharded, quantize, speculate, data_type, trust_remote_code, max_input_tokens, adapter_to_index, ) except Exception: logger.exception("Error when initializing model") raise set_adapter_to_index(adapter_to_index) server = aio.server( interceptors=[ ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor(), ], options=[ # Set the maximum possible message length: i32::MAX ("grpc.max_receive_message_length", (1 << 31) - 1) ], ) generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( TextGenerationService(model, Cache(), server_urls), server ) SERVICE_NAMES = ( generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, reflection.SERVICE_NAME, ) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(local_url) await server.start() logger.info("Server started at {}".format(local_url)) signal_handler = SignalHandler() while signal_handler.KEEP_PROCESSING: await asyncio.sleep(0.5) set_model_id(model_id) asyncio.run( serve_inner( model_id, lora_adapters, revision, sharded, quantize, speculate, dtype, trust_remote_code, ) )