# Copied logic from https://github.com/mit-han-lab/llm-awq/blob/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa/awq/quantize/qmodule.py import math import torch import torch.nn as nn import awq_inference_engine # with CUDA kernels class ScaledActivation(nn.Module): def __init__(self, module, scales): super().__init__() self.act = module self.scales = nn.Parameter(scales.data) def forward(self, x): return self.act(x) / self.scales.view(1, 1, -1).to(x.device) class WQLinear(nn.Module): def __init__(self, w_bit, group_size, qweight, qzeros, scales, bias): super().__init__() if w_bit not in [4]: raise NotImplementedError("Only 4-bit are supported for now.") self.in_features = qweight.shape[0] self.out_features = qweight.shape[1] * 32 // w_bit self.w_bit = w_bit self.group_size = group_size if group_size != -1 else self.in_features # quick sanity check (make sure aligment) assert self.in_features % self.group_size == 0 assert self.out_features % (32 // self.w_bit) == 0 self.register_buffer('qweight', qweight) self.register_buffer('qzeros', qzeros) self.register_buffer('scales', scales) if bias: self.register_buffer('bias', bias) else: self.bias = None @torch.no_grad() def forward(self, x): out_shape = x.shape[:-1] + (self.out_features, ) out = awq_inference_engine.gemm_forward_cuda(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, 8) out = out + self.bias if self.bias is not None else out return out.reshape(out_shape) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}, w_bit={}, group_size={}'.format( self.in_features, self.out_features, self.bias is not None, self.w_bit, self.group_size )