/// HTTP Server logic use crate::config::Config; use crate::infer::v2::SchedulerV2; use crate::infer::v3::SchedulerV3; use crate::infer::{HealthCheck, Scheduler}; use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar}; #[cfg(feature = "kserve")] use crate::kserve::{ kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer, kserve_model_metadata, kserve_model_metadata_ready, }; use crate::validation::ValidationError; use crate::{ BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Usage, Validation, }; use crate::{ ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob, ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk, CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse, }; use crate::{FunctionDefinition, ToolCall, ToolType}; use async_stream::__private::AsyncStream; use axum::extract::Extension; use axum::http::{HeaderMap, Method, StatusCode}; use axum::response::sse::{Event, KeepAlive, Sse}; use axum::response::{IntoResponse, Response}; use axum::routing::{get, post}; use axum::{http, Json, Router}; use axum_tracing_opentelemetry::middleware::OtelAxumLayer; use futures::stream::StreamExt; use futures::stream::{FuturesOrdered, FuturesUnordered}; use futures::Stream; use futures::TryStreamExt; use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle}; use serde_json::Value; use std::convert::Infallible; use std::net::SocketAddr; use std::sync::atomic::AtomicBool; use std::sync::Arc; use text_generation_client::{v2, v3, ClientError, ShardInfo}; use thiserror::Error; use tokenizers::Tokenizer; use tokio::select; use tokio::signal; use tokio::sync::oneshot; use tokio::time::Instant; use tower_http::cors::{AllowOrigin, CorsLayer}; use tracing::{info_span, instrument, Instrument}; use utoipa::OpenApi; use utoipa_swagger_ui::SwaggerUi; /// Generate tokens if `stream == false` or a stream of token if `stream == true` #[utoipa::path( post, tag = "Text Generation Inference", path = "/", request_body = CompatGenerateRequest, responses( (status = 200, description = "Generated Text", content( ("application/json" = GenerateResponse), ("text/event-stream" = StreamResponse), )), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument(skip(infer, req))] async fn compat_generate( Extension(default_return_full_text): Extension, infer: Extension, compute_type: Extension, Json(mut req): Json, ) -> Result)> { // default return_full_text given the pipeline_tag if req.parameters.return_full_text.is_none() { req.parameters.return_full_text = Some(default_return_full_text) } // switch on stream if req.stream { Ok(generate_stream(infer, compute_type, Json(req.into())) .await .into_response()) } else { let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?; // wrap generation inside a Vec to match api-inference Ok((headers, Json(vec![generation])).into_response()) } } /// Text Generation Inference endpoint info #[utoipa::path( get, tag = "Text Generation Inference", path = "/info", responses((status = 200, description = "Served model info", body = Info)) )] #[instrument] async fn get_model_info(info: Extension) -> Json { Json(info.0) } #[utoipa::path( get, tag = "Text Generation Inference", path = "/health", responses( (status = 200, description = "Everything is working fine"), (status = 503, description = "Text generation inference is down", body = ErrorResponse, example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})), ) )] #[instrument(skip(health))] /// Health check method async fn health( mut health: Extension, ) -> Result<(), (StatusCode, Json)> { match health.check().await { true => Ok(()), false => Err(( StatusCode::SERVICE_UNAVAILABLE, Json(ErrorResponse { error: "unhealthy".to_string(), error_type: "healthcheck".to_string(), }), )), } } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = GenerateResponse), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate( infer: Extension, Extension(ComputeType(compute_type)): Extension, Json(req): Json, ) -> Result<(HeaderMap, Json), (StatusCode, Json)> { let span = tracing::Span::current(); generate_internal(infer, ComputeType(compute_type), Json(req), span).await } pub(crate) async fn generate_internal( infer: Extension, ComputeType(compute_type): ComputeType, Json(req): Json, span: tracing::Span, ) -> Result<(HeaderMap, Json), (StatusCode, Json)> { let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); // Do not long ultra long inputs, like image payloads. tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]); let compute_characters = req.inputs.chars().count(); let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details: bool = req.parameters.details || req.parameters.decoder_input_details; // Inference let (response, best_of_responses) = match req.parameters.best_of { Some(best_of) if best_of > 1 => { let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?; (response, Some(best_of_responses)) } _ => (infer.generate(req).await?, None), }; // Token details let input_length = response._input_length; let details = match details { true => { // convert best_of_responses let best_of_sequences = best_of_responses.map(|responses: Vec| { responses .into_iter() .map(|response: InferResponse| { // Add prompt if return_full_text let mut output_text = response.generated_text.text; if let Some(prompt) = &add_prompt { output_text = prompt.clone() + &output_text; } BestOfSequence { generated_text: output_text, finish_reason: response.generated_text.finish_reason, generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, top_tokens: response.top_tokens, seed: response.generated_text.seed, } }) .collect() }); Some(Details { finish_reason: response.generated_text.finish_reason, generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, seed: response.generated_text.seed, best_of_sequences, top_tokens: response.top_tokens, }) } false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = response.queued - start_time; let queue_time = response.start - response.queued; let inference_time = Instant::now() - response.start; let time_per_token = inference_time / response.generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", response.generated_text.seed)); // Headers let mut headers = HeaderMap::new(); headers.insert("x-compute-type", compute_type.parse().unwrap()); headers.insert( "x-compute-time", total_time.as_secs_f64().to_string().parse().unwrap(), ); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert( "x-total-time", total_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-validation-time", validation_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-queue-time", queue_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-inference-time", inference_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-time-per-token", time_per_token.as_millis().to_string().parse().unwrap(), ); headers.insert("x-prompt-tokens", input_length.into()); headers.insert( "x-generated-tokens", response.generated_text.generated_tokens.into(), ); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!( "tgi_request_validation_duration", validation_time.as_secs_f64() ); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!( "tgi_request_inference_duration", inference_time.as_secs_f64() ); metrics::histogram!( "tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64() ); metrics::histogram!( "tgi_request_generated_tokens", response.generated_text.generated_tokens as f64 ); // Send response let mut output_text = response.generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!("Output: {}", output_text); tracing::info!("Success"); let response = GenerateResponse { generated_text: output_text, details, }; Ok((headers, Json(response))) } /// Generate a stream of token using Server-Sent Events #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate_stream", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = StreamResponse, content_type = "text/event-stream"), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"}), content_type = "text/event-stream"), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"}), content_type = "text/event-stream"), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"}), content_type = "text/event-stream"), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"}), content_type = "text/event-stream"), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate_stream( Extension(infer): Extension, Extension(compute_type): Extension, Json(req): Json, ) -> ( HeaderMap, Sse>>, ) { let span = tracing::Span::current(); let on_message_callback = |stream_token: StreamResponse| { let event = Event::default(); event.json_data(stream_token).unwrap() }; let (headers, response_stream) = generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); (headers, sse) } async fn generate_stream_internal( infer: Infer, ComputeType(compute_type): ComputeType, Json(req): Json, on_message_callback: impl Fn(StreamResponse) -> Event, span: tracing::Span, ) -> (HeaderMap, impl Stream>) { let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); tracing::debug!("Input: {}", req.inputs); let compute_characters = req.inputs.chars().count(); let mut headers = HeaderMap::new(); headers.insert("x-compute-type", compute_type.parse().unwrap()); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert("X-Accel-Buffering", "no".parse().unwrap()); let stream = async_stream::stream! { // Inference let mut end_reached = false; let mut error = false; let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details = req.parameters.details; let best_of = req.parameters.best_of.unwrap_or(1); if best_of != 1 { let err = InferError::from(ValidationError::BestOfStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else if req.parameters.decoder_input_details { let err = InferError::from(ValidationError::PrefillDetailsStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else { match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await { // Keep permit as long as generate_stream lives Ok((_permit, _input_length, mut response_stream)) => { let mut index = 0; // Server-Sent Event stream while let Some(response) = response_stream.next().await { index += 1; match response { Ok(response) => { match response { // Prefill is ignored InferStreamResponse::Prefill(_) => {} // Yield event for every new token InferStreamResponse::Intermediate{ token, top_tokens, } => { tracing::debug!(parent: &span, "Token: {:?}", token); // StreamResponse let stream_token = StreamResponse { index, token, top_tokens, generated_text: None, details: None, }; let event = on_message_callback(stream_token); yield Ok(event); } // Yield event for last token and compute timings InferStreamResponse::End { token, generated_text, start, queued, top_tokens, } => { // Token details let details = match details { true => Some(StreamDetails { finish_reason: generated_text.finish_reason, generated_tokens: generated_text.generated_tokens, seed: generated_text.seed, }), false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = queued - start_time; let queue_time = start - queued; let inference_time = Instant::now() - start; let time_per_token = inference_time / generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", generated_text.seed)); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64()); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64()); metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64()); metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64); // StreamResponse end_reached = true; let mut output_text = generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!(parent: &span, "Output: {}", output_text); tracing::info!(parent: &span, "Success"); let stream_token = StreamResponse { index, token, top_tokens, generated_text: Some(output_text), details }; let event = on_message_callback(stream_token); yield Ok(event); break; } } } // yield error Err(err) => { error = true; yield Ok(Event::from(err)); break; } } } }, // yield error Err(err) => { error = true; yield Ok(Event::from(err)); } } // Check if generation reached the end // Skip if we already sent an error if !end_reached && !error { let err = InferError::IncompleteGeneration; metrics::increment_counter!("tgi_request_failure", "err" => "incomplete"); tracing::error!("{err}"); yield Ok(Event::from(err)); } } }; (headers, stream) } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/v1/completions", request_body = CompletionRequest, responses( (status = 200, description = "Generated Chat Completion", content( ("application/json" = Completion), ("text/event-stream" = CompletionCompleteChunk), )), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( // parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn completions( Extension(infer): Extension, Extension(compute_type): Extension, Extension(info): Extension, Json(req): Json, ) -> Result)> { let span = tracing::Span::current(); metrics::increment_counter!("tgi_request_count"); let CompletionRequest { max_tokens, seed, stop, stream, temperature, .. } = req; let max_new_tokens = max_tokens.or(Some(100)); let stop = stop.unwrap_or_default(); // enable greedy only when temperature is 0 let (do_sample, temperature) = match temperature { Some(temperature) if temperature == 0.0 => (false, None), other => (true, other), }; // if suffix is present throw an error if req.suffix.is_some() { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: "Suffix is not supported and can be achieved by preprocessing the prompt." .to_string(), error_type: "suffix not supported".to_string(), }), )); } if req.prompt.len() > info.max_client_batch_size { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: format!( "Number of prompts exceeds the maximum allowed batch size of {}", info.max_client_batch_size ), error_type: "batch size exceeded".to_string(), }), )); } let generate_requests: Vec = req .prompt .iter() .map(|prompt| GenerateRequest { inputs: prompt.to_string(), parameters: GenerateParameters { best_of: None, temperature, repetition_penalty: req.repetition_penalty, frequency_penalty: req.frequency_penalty, top_k: None, top_p: req.top_p, typical_p: None, do_sample, max_new_tokens, return_full_text: None, stop: stop.clone(), truncate: None, watermark: false, details: true, decoder_input_details: !stream, seed, top_n_tokens: None, grammar: None, ..Default::default() }, }) .collect(); let mut x_compute_type = None; let mut x_compute_characters = 0u32; let mut x_accel_buffering = None; if stream { let mut response_streams = FuturesOrdered::new(); for (index, generate_request) in generate_requests.into_iter().enumerate() { let model_id = info.model_id.clone(); let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native")); let infer_clone = infer.clone(); let compute_type_clone = compute_type.clone(); let span_clone = span.clone(); // Create a future for each generate_stream_internal call. let generate_future = async move { let on_message_callback = move |stream_token: StreamResponse| { let event = Event::default(); let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); event .json_data(CompletionCompleteChunk { id: "".to_string(), object: "text_completion".to_string(), created: current_time, choices: vec![CompletionComplete { finish_reason: "".to_string(), index: index as u32, logprobs: None, text: stream_token.token.text, }], model: model_id.clone(), system_fingerprint: system_fingerprint.clone(), }) .unwrap_or_else(|_e| Event::default()) }; let (header_tx, header_rx) = oneshot::channel(); let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel(); tokio::spawn(async move { let (header_map, sse) = generate_stream_internal( infer_clone.clone(), compute_type_clone.clone(), Json(generate_request), on_message_callback, span_clone.clone(), ) .await; // send and dont wait for response let _ = header_tx.send(header_map); // pin an emit messages to the sse_tx let mut sse = Box::pin(sse); while let Some(event) = sse.next().await { if sse_tx.send(event).is_err() { tracing::error!("Failed to send event. Receiver dropped."); break; } } }); (header_rx, sse_rx) }; response_streams.push_back(generate_future); } let mut all_rxs = vec![]; while let Some((header_rx, sse_rx)) = response_streams.next().await { all_rxs.push(sse_rx); // get the headers from the first response of each stream let headers = header_rx.await.map_err(|e| { tracing::error!("Failed to get headers: {:?}", e); ( StatusCode::INTERNAL_SERVER_ERROR, Json(ErrorResponse { error: "Failed to get headers".to_string(), error_type: "headers".to_string(), }), ) })?; if x_compute_type.is_none() { x_compute_type = headers .get("x-compute-type") .and_then(|v| v.to_str().ok()) .map(|v| v.to_string()); x_accel_buffering = headers .get("x-accel-buffering") .and_then(|v| v.to_str().ok()) .map(|v| v.to_string()); } x_compute_characters += headers .get("x-compute-characters") .and_then(|v| v.to_str().ok()) .and_then(|v| v.parse().ok()) .unwrap_or(0); } let mut headers = HeaderMap::new(); if let Some(x_compute_type) = x_compute_type { headers.insert("x-compute-type", x_compute_type.parse().unwrap()); } headers.insert("x-compute-characters", x_compute_characters.into()); if let Some(x_accel_buffering) = x_accel_buffering { headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap()); } // now sink the sse streams into a single stream and remove the ones that are done let stream: AsyncStream, _> = async_stream::stream! { loop { let mut i = 0; while i < all_rxs.len() { let rx = &mut all_rxs[i]; select! { Some(event) = rx.recv() => { yield event; } else => { all_rxs.remove(i); continue; // skip the increment to handle the next element at the same index } } i += 1; // only increment when no element was removed } if all_rxs.is_empty() { break; } } }; let sse = Sse::new(stream).keep_alive(KeepAlive::default()); Ok((headers, sse).into_response()) } else { let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); let responses = FuturesUnordered::new(); for (index, generate_request) in generate_requests.into_iter().enumerate() { let infer_clone = infer.clone(); let compute_type_clone = compute_type.clone(); let span_clone = span.clone(); let response_future = async move { let result = generate_internal( Extension(infer_clone), compute_type_clone, Json(generate_request), span_clone, ) .await; result.map(|(headers, generation)| (index, headers, generation)) }; responses.push(response_future); } let generate_responses = responses.try_collect::>().await?; let mut prompt_tokens = 0u32; let mut completion_tokens = 0u32; let mut total_tokens = 0u32; let mut x_compute_time = 0u32; let mut x_total_time = 0u32; let mut x_validation_time = 0u32; let mut x_queue_time = 0u32; let mut x_inference_time = 0u32; let mut x_time_per_token = 0u32; let mut x_prompt_tokens = 0u32; let mut x_generated_tokens = 0u32; let choices = generate_responses .into_iter() .map(|(index, headers, Json(generation))| { let details = generation.details.ok_or(( // this should never happen but handle if details are missing unexpectedly StatusCode::INTERNAL_SERVER_ERROR, Json(ErrorResponse { error: "No details in generation".to_string(), error_type: "no details".to_string(), }), ))?; if x_compute_type.is_none() { x_compute_type = headers .get("x-compute-type") .and_then(|v| v.to_str().ok()) .map(|v| v.to_string()); } // accumulate headers and usage from each response x_compute_time += headers .get("x-compute-time") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_compute_characters += headers .get("x-compute-characters") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_total_time += headers .get("x-total-time") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_validation_time += headers .get("x-validation-time") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_queue_time += headers .get("x-queue-time") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_inference_time += headers .get("x-inference-time") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_time_per_token += headers .get("x-time-per-token") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_prompt_tokens += headers .get("x-prompt-tokens") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); x_generated_tokens += headers .get("x-generated-tokens") .and_then(|v| v.to_str().ok()?.parse().ok()) .unwrap_or(0); prompt_tokens += details.prefill.len() as u32; completion_tokens += details.generated_tokens; total_tokens += details.prefill.len() as u32 + details.generated_tokens; Ok(CompletionComplete { finish_reason: details.finish_reason.to_string(), index: index as u32, logprobs: None, text: generation.generated_text, }) }) .collect::, _>>() .map_err(|(status, Json(err))| (status, Json(err)))?; let response = Completion { id: "".to_string(), object: "text_completion".to_string(), created: current_time, model: info.model_id.clone(), system_fingerprint: format!( "{}-{}", info.version, info.docker_label.unwrap_or("native") ), choices, usage: Usage { prompt_tokens, completion_tokens, total_tokens, }, }; // headers similar to `generate` but aggregated let mut headers = HeaderMap::new(); if let Some(x_compute_type) = x_compute_type { headers.insert("x-compute-type", x_compute_type.parse().unwrap()); } headers.insert("x-compute-characters", x_compute_characters.into()); headers.insert("x-total-time", x_total_time.into()); headers.insert("x-validation-time", x_validation_time.into()); headers.insert("x-queue-time", x_queue_time.into()); headers.insert("x-inference-time", x_inference_time.into()); headers.insert("x-time-per-token", x_time_per_token.into()); headers.insert("x-prompt-tokens", x_prompt_tokens.into()); headers.insert("x-generated-tokens", x_generated_tokens.into()); if let Some(x_accel_buffering) = x_accel_buffering { headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap()); } Ok((headers, Json(response)).into_response()) } } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/v1/chat/completions", request_body = ChatRequest, responses( (status = 200, description = "Generated Chat Completion", content( ("application/json" = ChatCompletion), ("text/event-stream" = ChatCompletionChunk), )), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( // parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn chat_completions( Extension(infer): Extension, Extension(compute_type): Extension, Extension(info): Extension, Json(req): Json, ) -> Result)> { let span = tracing::Span::current(); metrics::increment_counter!("tgi_request_count"); let ChatRequest { logprobs, max_tokens, messages, presence_penalty, seed, stop, stream, tools, tool_choice, tool_prompt, temperature, response_format, .. } = req; let repetition_penalty = presence_penalty.map(|x| x + 2.0); let max_new_tokens = max_tokens.or(Some(100)); let logprobs = logprobs.unwrap_or(false); let tool_prompt = tool_prompt.unwrap_or_default(); let stop = stop.unwrap_or_default(); // enable greedy only when temperature is 0 let (do_sample, temperature) = match temperature { Some(temperature) if temperature == 0.0 => (false, None), other => (true, other), }; // response_format and tools are mutually exclusive if response_format.is_some() && tools.as_ref().is_some() { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: "Grammar and tools are mutually exclusive".to_string(), error_type: "grammar and tools".to_string(), }), )); } // extract tool grammar if present let tool_grammar = match ToolGrammar::apply(tools, tool_choice) { Ok(grammar) => grammar, Err(err) => { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), )); } }; // determine the appropriate arguments for apply_chat_template let tools_grammar_prompt = tool_grammar .as_ref() .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt)); let (tools_grammar_prompt, grammar) = match response_format { Some(response_format) => (None, Some(response_format)), None => ( tools_grammar_prompt.clone(), tools_grammar_prompt.map(|(grammar, _)| grammar.clone()), ), }; // apply chat template to flatten the request into a single input let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) { Ok(inputs) => inputs, Err(err) => { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), )); } }; // build the request passing some parameters let generate_request = GenerateRequest { inputs: inputs.to_string(), parameters: GenerateParameters { best_of: None, temperature, repetition_penalty, frequency_penalty: req.frequency_penalty, top_k: None, top_p: req.top_p, typical_p: None, do_sample, max_new_tokens, return_full_text: None, stop, truncate: None, watermark: false, details: true, decoder_input_details: !stream, seed, top_n_tokens: req.top_logprobs, grammar, ..Default::default() }, }; // static values that will be returned in all cases let model_id = info.model_id.clone(); let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native")); // switch on stream if stream { // pass this callback to the stream generation and build the required event structure let on_message_callback = move |stream_token: StreamResponse| { let event = Event::default(); let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); let logprobs = logprobs.then(|| { ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens)) }); // replace the content with the tool calls if grammar is present let (content, tool_calls) = if tool_grammar.is_some() { (None, Some(vec![stream_token.token.text])) } else { let content = if !stream_token.token.special { Some(stream_token.token.text) } else { None }; (content, None) }; event .json_data(ChatCompletionChunk::new( model_id.clone(), system_fingerprint.clone(), content, tool_calls, current_time, logprobs, stream_token.details.map(|d| d.finish_reason.to_string()), )) .unwrap_or_else(|e| { println!("Failed to serialize ChatCompletionChunk: {:?}", e); Event::default() }) }; let (headers, response_stream) = generate_stream_internal( infer, compute_type, Json(generate_request), on_message_callback, span, ) .await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); Ok((headers, sse).into_response()) } else { let (headers, Json(generation)) = generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?; let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); let (tool_calls, output) = if tool_grammar.is_some() { // gen_text should be valid json let gen_text_value: Value = serde_json::from_str(&generation.generated_text).map_err(|e| { ( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: e.to_string(), error_type: "Input validation error".to_string(), }), ) })?; let tool_calls = vec![ToolCall { id: "0".to_string(), r#type: "function".to_string(), function: FunctionDefinition { description: None, name: gen_text_value .get("function") .and_then(|f| f.get("_name")) .and_then(|name| name.as_str()) .unwrap_or("default_function_name") .to_string(), // Serialize the JSON object obtained from "function" to an escaped JSON string arguments: gen_text_value .get("function") .map(|f| { let mut f_cloned = f.clone(); if let Value::Object(ref mut props) = f_cloned { props.remove("_name"); } f_cloned }) .unwrap_or_default(), }, }]; (Some(tool_calls), None) } else { (None, Some(generation.generated_text)) }; // build the complete response object with the full text let response = ChatCompletion::new( model_id, system_fingerprint, output, current_time, generation.details.unwrap(), logprobs, tool_calls, ); // wrap generation inside a Vec to match api-inference Ok((headers, Json(response)).into_response()) } } /// Generate tokens from Vertex request #[utoipa::path( post, tag = "Text Generation Inference", path = "/vertex", request_body = VertexRequest, responses( (status = 200, description = "Generated Text", body = VertexResponse), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn vertex_compatibility( Extension(infer): Extension, Extension(compute_type): Extension, Json(req): Json, ) -> Result)> { let span = tracing::Span::current(); metrics::increment_counter!("tgi_request_count"); // check that theres at least one instance if req.instances.is_empty() { return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: "Input validation error".to_string(), error_type: "Input validation error".to_string(), }), )); } // Process all instances let predictions = req .instances .iter() .map(|instance| { let generate_request = GenerateRequest { inputs: instance.inputs.clone(), parameters: GenerateParameters { do_sample: true, max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens), seed: instance.parameters.as_ref().and_then(|p| p.seed), details: true, decoder_input_details: true, ..Default::default() }, }; async { generate_internal( Extension(infer.clone()), compute_type.clone(), Json(generate_request), span.clone(), ) .await .map(|(_, Json(generation))| generation.generated_text) .map_err(|_| { ( StatusCode::INTERNAL_SERVER_ERROR, Json(ErrorResponse { error: "Incomplete generation".into(), error_type: "Incomplete generation".into(), }), ) }) } }) .collect::>() .try_collect::>() .await?; let response = VertexResponse { predictions }; Ok((HeaderMap::new(), Json(response)).into_response()) } /// Tokenize inputs #[utoipa::path( post, tag = "Text Generation Inference", path = "/tokenize", request_body = GenerateRequest, responses( (status = 200, description = "Tokenized ids", body = TokenizeResponse), (status = 404, description = "No tokenizer found", body = ErrorResponse, example = json ! ({"error": "No fast tokenizer available"})), ) )] #[instrument(skip_all)] async fn tokenize( Extension(infer): Extension, Json(req): Json, ) -> Result, (StatusCode, Json)> { let input = req.inputs.clone(); let encoding = infer.tokenize(req).await?; if let Some(encoding) = encoding { let tokens: Vec = encoding .get_ids() .iter() .zip(encoding.get_offsets()) .map(|(&id, &(start, stop))| { let text: String = String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string(); SimpleToken { id, text, start, stop, } }) .collect(); Ok(Json(TokenizeResponse(tokens))) } else { Err(( StatusCode::NOT_FOUND, Json(ErrorResponse { error: "No fast tokenizer or tokenizer.json for this model".to_string(), error_type: "no fast tokenizer".to_string(), }), )) } } /// Prometheus metrics scrape endpoint #[utoipa::path( get, tag = "Text Generation Inference", path = "/metrics", responses((status = 200, description = "Prometheus Metrics", body = String)) )] async fn metrics(prom_handle: Extension) -> String { prom_handle.render() } #[derive(Clone, Debug)] pub(crate) struct ComputeType(String); /// Serving method #[allow(clippy::too_many_arguments)] pub async fn run( master_shard_uds_path: String, model_info: HubModelInfo, compat_return_full_text: bool, max_concurrent_requests: usize, max_best_of: usize, max_stop_sequences: usize, max_top_n_tokens: u32, max_input_tokens: usize, max_total_tokens: usize, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: Option, max_waiting_tokens: usize, max_batch_size: Option, tokenizer: Option, config: Option, validation_workers: usize, addr: SocketAddr, allow_origin: Option, ngrok: bool, _ngrok_authtoken: Option, _ngrok_edge: Option, tokenizer_config: HubTokenizerConfig, processor_config: HubProcessorConfig, messages_api_enabled: bool, grammar_support: bool, max_client_batch_size: usize, ) -> Result<(), WebServerError> { // OpenAPI documentation #[derive(OpenApi)] #[openapi( paths( health, get_model_info, compat_generate, generate, generate_stream, chat_completions, completions, tokenize, metrics, ), components( schemas( Info, CompatGenerateRequest, GenerateRequest, GrammarType, ChatRequest, Message, ChatCompletionComplete, ChatCompletionChoice, ChatCompletionDelta, ChatCompletionChunk, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob, ChatCompletion, CompletionRequest, CompletionComplete, CompletionCompleteChunk, GenerateParameters, PrefillToken, Token, GenerateResponse, TokenizeResponse, SimpleToken, BestOfSequence, Details, FinishReason, StreamResponse, StreamDetails, ErrorResponse, GrammarType, Usage, DeltaToolCall, ToolType, Tool, ToolCall, Function, FunctionDefinition, ) ), tags( (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API") ), info( title = "Text Generation Inference", license( name = "Apache 2.0", url = "https://www.apache.org/licenses/LICENSE-2.0" ) ) )] struct ApiDoc; // Create state // Open connection, get model info and warmup let (scheduler, health_ext, shard_info, max_batch_total_tokens): ( Arc, HealthCheck, ShardInfo, u32, ) = { // Helper function to check both v2 and v3 let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option| { match max_supported_batch_total_tokens { // Older models do not support automatic max-batch-total-tokens None => { let max_batch_total_tokens = max_batch_total_tokens.unwrap_or( 16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)), ); tracing::warn!("Model does not support automatic max batch total tokens"); Ok(max_batch_total_tokens) } // Flash attention models return their max supported total tokens Some(max_supported_batch_total_tokens) => { // Warn if user added his own max-batch-total-tokens as we will ignore it if max_batch_total_tokens.is_some() { tracing::warn!( "`--max-batch-total-tokens` is deprecated for Flash \ Attention models." ); tracing::warn!( "Inferred max batch total tokens: {max_supported_batch_total_tokens}" ); } if max_total_tokens as u32 > max_supported_batch_total_tokens { return Err(WebServerError::NotEnoughMemory(max_total_tokens)); } Ok(max_supported_batch_total_tokens) } } }; let generation_health = Arc::new(AtomicBool::new(false)); match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await { Ok(mut sharded_client) => { // server is running on v3 // Clear the cache; useful if the webserver rebooted sharded_client .clear_cache(None) .await .map_err(WebServerError::Cache)?; // Get info from the shard let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?; // Warmup model tracing::info!("Warming up model"); let max_batch_total_tokens = check_max_batch_total_tokens( sharded_client .warmup( max_input_tokens as u32, max_batch_prefill_tokens, max_total_tokens as u32, max_batch_size, ) .await .map_err(WebServerError::Warmup)?, )?; let health_ext = HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone()); let scheduler = Arc::new(SchedulerV3::new( sharded_client, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_batch_size, shard_info.requires_padding, shard_info.window_size, shard_info.speculate, generation_health, )); tracing::info!("Using scheduler V3"); (scheduler, health_ext, shard_info, max_batch_total_tokens) } Err(_) => { let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path) .await .map_err(WebServerError::Connection)?; // server is running on v2 // Clear the cache; useful if the webserver rebooted sharded_client .clear_cache(None) .await .map_err(WebServerError::Cache)?; // Get info from the shard let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?; // Warmup model tracing::info!("Warming up model"); let max_batch_total_tokens = check_max_batch_total_tokens( sharded_client .warmup( max_input_tokens as u32, max_batch_prefill_tokens, max_total_tokens as u32, max_batch_size, ) .await .map_err(WebServerError::Warmup)?, )?; let health_ext = HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone()); let scheduler = Arc::new(SchedulerV2::new( sharded_client, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_batch_size, shard_info.requires_padding, shard_info.window_size, shard_info.speculate, generation_health, )); tracing::info!("Using scheduler V2"); (scheduler, health_ext, shard_info, max_batch_total_tokens) } } }; tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}"); let validation = Validation::new( validation_workers, tokenizer, config, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_tokens, max_total_tokens, grammar_support, ); let infer = Infer::new( scheduler, validation, max_concurrent_requests, tokenizer_config, processor_config, ); // Duration buckets let duration_matcher = Matcher::Suffix(String::from("duration")); let n_duration_buckets = 35; let mut duration_buckets = Vec::with_capacity(n_duration_buckets); // Minimum duration in seconds let mut value = 0.0001; for _ in 0..n_duration_buckets { // geometric sequence value *= 1.5; duration_buckets.push(value); } // Input Length buckets let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length")); let input_length_buckets: Vec = (0..100) .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Generated tokens buckets let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens")); let generated_tokens_buckets: Vec = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Input Length buckets let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens")); let max_new_tokens_buckets: Vec = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Batch size buckets let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size")); let batch_size_buckets: Vec = (0..1024).map(|x| (x + 1) as f64).collect(); // Speculated tokens buckets let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens")); let skipped_buckets: Vec = (0..shard_info.speculate + 1).map(|x| x as f64).collect(); // Prometheus handler let builder = PrometheusBuilder::new() .set_buckets_for_metric(duration_matcher, &duration_buckets) .unwrap() .set_buckets_for_metric(input_length_matcher, &input_length_buckets) .unwrap() .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets) .unwrap() .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets) .unwrap() .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets) .unwrap() .set_buckets_for_metric(skipped_matcher, &skipped_buckets) .unwrap(); let prom_handle = builder .install_recorder() .expect("failed to install metrics recorder"); // CORS layer let allow_origin = allow_origin.unwrap_or(AllowOrigin::any()); let cors_layer = CorsLayer::new() .allow_methods([Method::GET, Method::POST]) .allow_headers([http::header::CONTENT_TYPE]) .allow_origin(allow_origin); // Endpoint info let info = Info { model_id: model_info.model_id, model_sha: model_info.sha, model_dtype: shard_info.dtype, model_device_type: shard_info.device_type, model_pipeline_tag: model_info.pipeline_tag, max_concurrent_requests, max_best_of, max_stop_sequences, max_input_tokens, max_total_tokens, waiting_served_ratio, max_batch_total_tokens, max_waiting_tokens, max_batch_size, validation_workers, max_client_batch_size, router: env!("CARGO_PKG_NAME"), version: env!("CARGO_PKG_VERSION"), sha: option_env!("VERGEN_GIT_SHA"), docker_label: option_env!("DOCKER_LABEL"), }; #[allow(unused_mut)] // mut is needed for conditional compilation let mut doc = ApiDoc::openapi(); #[cfg(feature = "google")] { use crate::VertexInstance; #[derive(OpenApi)] #[openapi( paths(vertex_compatibility), components(schemas(VertexInstance, VertexRequest, VertexResponse)) )] struct VertexApiDoc; doc.merge(VertexApiDoc::openapi()); } #[cfg(feature = "kserve")] { use crate::kserve::{ InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk, ReadyResponse, }; use crate::kserve::{ __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready, __path_kserve_model_infer, __path_kserve_model_metadata, __path_kserve_model_metadata_ready, }; #[derive(OpenApi)] #[openapi( paths( kserve_health_live, kserve_health_ready, kerve_server_metadata, kserve_model_metadata, kserve_model_metadata_ready, kserve_model_infer, ), components(schemas( InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk, ReadyResponse, )) )] struct KServeApiDoc; doc.merge(KServeApiDoc::openapi()); } // Configure Swagger UI let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc); // Define base and health routes let base_routes = Router::new() .route("/", post(compat_generate)) .route("/", get(health)) .route("/info", get(get_model_info)) .route("/generate", post(generate)) .route("/generate_stream", post(generate_stream)) .route("/v1/chat/completions", post(chat_completions)) .route("/v1/completions", post(completions)) .route("/vertex", post(vertex_compatibility)) .route("/tokenize", post(tokenize)) .route("/health", get(health)) .route("/ping", get(health)) .route("/metrics", get(metrics)); // Conditional AWS Sagemaker route let aws_sagemaker_route = if messages_api_enabled { Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED } else { Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise }; let compute_type = ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string())); // Combine routes and layers let mut app = Router::new() .merge(swagger_ui) .merge(base_routes) .merge(aws_sagemaker_route); #[cfg(feature = "google")] { tracing::info!("Built with `google` feature"); tracing::info!( "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected." ); if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") { app = app.route(&env_predict_route, post(vertex_compatibility)); } if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") { app = app.route(&env_health_route, get(health)); } } #[cfg(feature = "kserve")] { tracing::info!("Built with `kserve` feature"); app = app .route( "/v2/models/:model_name/versions/:model_version/infer", post(kserve_model_infer), ) .route( "/v2/models/:model_name/versions/:model_version", get(kserve_model_metadata), ) .route("/v2/health/ready", get(kserve_health_ready)) .route("/v2/health/live", get(kserve_health_live)) .route("/v2", get(kerve_server_metadata)) .route( "/v2/models/:model_name/versions/:model_version/ready", get(kserve_model_metadata_ready), ); } // add layers after routes app = app .layer(Extension(info)) .layer(Extension(health_ext.clone())) .layer(Extension(compat_return_full_text)) .layer(Extension(infer)) .layer(Extension(compute_type)) .layer(Extension(prom_handle.clone())) .layer(OtelAxumLayer::default()) .layer(cors_layer); tracing::info!("Connected"); if ngrok { #[cfg(feature = "ngrok")] { panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable."); // Run server } #[cfg(not(feature = "ngrok"))] { let _ngrok_authtoken = ngrok_authtoken; let _ngrok_domain = ngrok_domain; let _ngrok_username = ngrok_username; let _ngrok_password = ngrok_password; panic!("`text-generation-router` was compiled without the `ngrok` feature"); } } else { // Run server let listener = tokio::net::TcpListener::bind(&addr).await.unwrap(); axum::serve(listener, app) .with_graceful_shutdown(shutdown_signal()) .await .map_err(|err| WebServerError::Axum(Box::new(err)))?; } Ok(()) } /// Shutdown signal handler async fn shutdown_signal() { let ctrl_c = async { signal::ctrl_c() .await .expect("failed to install Ctrl+C handler"); }; #[cfg(unix)] let terminate = async { signal::unix::signal(signal::unix::SignalKind::terminate()) .expect("failed to install signal handler") .recv() .await; }; #[cfg(not(unix))] let terminate = std::future::pending::<()>(); tokio::select! { _ = ctrl_c => {}, _ = terminate => {}, } tracing::info!("signal received, starting graceful shutdown"); opentelemetry::global::shutdown_tracer_provider(); } /// Convert to Axum supported formats impl From for (StatusCode, Json) { fn from(err: InferError) -> Self { let status_code = match err { InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY, InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS, InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY, InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR, InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY, InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY, }; ( status_code, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), ) } } impl From for Event { fn from(err: InferError) -> Self { Event::default() .json_data(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }) .unwrap() } } #[derive(Debug, Error)] pub enum WebServerError { #[error("Unable to connect to the Python model shards: {0}")] Connection(ClientError), #[error("Unable to clear the Python model shards cache: {0}")] Cache(ClientError), #[error("Unable to get the Python model shards info: {0}")] Info(ClientError), #[error("Unable to warmup the Python model shards: {0}")] Warmup(ClientError), #[error("Not enough memory to handle `max_total_tokens={0}`")] NotEnoughMemory(usize), #[error("Axum error: {0}")] Axum(#[from] axum::BoxError), }