# Launching with Docker The easiest way of getting started is using the official Docker container: ```shell model=tiiuae/falcon-7b-instruct volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model ``` **Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. You can then query the model using either the `/generate` or `/generate_stream` routes: ```shell curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` ```shell curl 127.0.0.1:8080/generate_stream \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` or from Python: ```shell pip install text-generation ``` ```python from text_generation import Client client = Client("http://127.0.0.1:8080") print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text) text = "" for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20): if not response.token.special: text += response.token.text print(text) ``` To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs)) or in the cli: ``` text-generation-launcher --help ```