import math import numpy as np import torch import torch.nn as nn try: convert_from_uint4 = torch.ops.hpu.convert_from_uint4 except Exception as e: hpu_import_exception = e def error_raiser_hpu(*args, **kwargs): raise ValueError( f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}" ) convert_from_uint4 = error_raiser_hpu def pack_tensor(input, bits=4): normal = input.to(torch.int32) q = torch.zeros((normal.shape[0], normal.shape[1] // 32 * bits), dtype=torch.int32) i = 0 col = 0 while col < q.shape[1]: for j in range(i, i + (32 // bits)): q[:, col] |= normal[:, j] << (bits * (j - i)) i += 32 // bits col += 1 q = q.to(torch.int32) return q class QuantLinear(nn.Module): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() self.register_buffer("qweight", qweight) self.register_buffer("qzeros", qzeros) self.register_buffer("scales", scales) self.register_buffer("g_idx", g_idx) if bias is not None: self.register_buffer("bias", bias) else: self.bias = None if bits not in [4]: raise NotImplementedError("Only 4 bits are supported.") self.bits = bits self.maxq = 2**self.bits - 1 self.groupsize = groupsize self.outfeatures = qweight.shape[1] self.infeatures = qweight.shape[0] * 32 // bits self.wf = torch.tensor( list(range(0, 32, self.bits)), dtype=torch.int32 ).unsqueeze(0) self._preprocessing() def unpack_zeros_from_cuda_old_format(self): zeros = torch.bitwise_right_shift( torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0), ).to(torch.int16 if self.bits == 8 else torch.int8) zeros = zeros + 1 zeros = torch.bitwise_and(zeros, (2**self.bits) - 1).to( self.scales.dtype ) # NOTE: It appears that casting here after the `zeros = zeros + 1` is important. zeros = zeros.reshape(-1, zeros.shape[1] * zeros.shape[2]) return zeros def unpack_weight_from_cuda_old_format(self): weight = torch.bitwise_right_shift( torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1), ).to(torch.int16 if self.bits == 8 else torch.int8) weight = torch.bitwise_and(weight, (2**self.bits) - 1) weight = weight.reshape((weight.shape[0] * weight.shape[1], weight.shape[2])) return weight def _preprocessing(self): orig_device = self.qweight.device self.qweight = self.qweight.cpu() weight = self.unpack_weight_from_cuda_old_format() new_qweight = pack_tensor(weight) self.qweight = new_qweight.to(orig_device) # TODO: Support group indexing and remove the check columns = self.qweight.shape[0] g_idx_trivial = [i // self.groupsize for i in range(columns)] g_idx_trivial = torch.tensor( g_idx_trivial, dtype=torch.int32, device=self.g_idx.device ) assert torch.equal( self.g_idx, g_idx_trivial ), "Non-trivial tensor g_idx is not supported" self.qzeros = self.qzeros.cpu() zeros = self.unpack_zeros_from_cuda_old_format() new_qzeros = pack_tensor(zeros) self.qzeros = new_qzeros.to(orig_device) @classmethod def new(cls, bits, groupsize, infeatures, outfeatures, bias): if bits not in [4]: raise NotImplementedError("Only 4 bits are supported.") qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32) qzeros = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures // 32 * bits), dtype=torch.int32, ) scales = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16 ) g_idx = torch.tensor( [i // groupsize for i in range(infeatures)], dtype=torch.int32 ) if bias: bias = torch.zeros((outfeatures), dtype=torch.float16) else: bias = None return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize) def pack(self, linear, scales, zeros, g_idx=None): self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( (linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) i = 0 row = 0 while row < qweight.shape[0]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 4 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros( (zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32 ) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 4 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) x = x.reshape(-1, x.shape[-1]) weight = convert_from_uint4(self.qweight, self.scales, self.qzeros, x.dtype) out = torch.matmul(x, weight) out = out.reshape(out_shape) out = out + self.bias if self.bias is not None else out return out