import torch import os from loguru import logger from transformers.configuration_utils import PretrainedConfig from transformers.models.auto import modeling_auto from huggingface_hub import hf_hub_download, HfApi from typing import Optional from pathlib import Path from text_generation_server.utils.speculate import get_speculate, set_speculate from text_generation_server.models.model import Model from text_generation_server.models.causal_lm import CausalLM from text_generation_server.models.flash_causal_lm import FlashCausalLM from text_generation_server.models.bloom import BLOOMSharded from text_generation_server.models.mpt import MPTSharded from text_generation_server.models.seq2seq_lm import Seq2SeqLM from text_generation_server.models.rw import RW from text_generation_server.models.opt import OPTSharded from text_generation_server.models.galactica import GalacticaSharded from text_generation_server.models.santacoder import SantaCoder from text_generation_server.models.t5 import T5Sharded from text_generation_server.models.gpt_neox import GPTNeoxSharded from text_generation_server.models.phi import Phi # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. torch.backends.cudnn.allow_tf32 = True # Disable gradients torch.set_grad_enabled(False) __all__ = [ "Model", "BLOOMSharded", "CausalLM", "GalacticaSharded", "Seq2SeqLM", "SantaCoder", "OPTSharded", "T5Sharded", "get_model", ] FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models." FLASH_ATTENTION = True try: from text_generation_server.models.flash_rw import FlashRWSharded from text_generation_server.models.flash_gpt2 import FlashGPT2 from text_generation_server.models.flash_neox import FlashNeoXSharded from text_generation_server.models.flash_llama import ( FlashLlama, ) from text_generation_server.models.flash_qwen2 import ( FlashQwen2, ) from text_generation_server.models.flash_cohere import ( FlashCohere, ) from text_generation_server.models.flash_gemma import ( FlashGemma, ) from text_generation_server.models.flash_santacoder import ( FlashSantacoderSharded, ) from text_generation_server.models.idefics import IDEFICSSharded from text_generation_server.models.llava_next import LlavaNext from text_generation_server.models.idefics2 import Idefics2 from text_generation_server.models.flash_mistral import FlashMistral from text_generation_server.models.flash_mixtral import FlashMixtral from text_generation_server.models.flash_phi import FlashPhi from text_generation_server.models.flash_starcoder2 import FlashStarcoder2 from text_generation_server.models.flash_dbrx import FlashDbrx from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_CUDA except ImportError as e: logger.warning(f"Could not import Flash Attention enabled models: {e}") FLASH_ATTENTION = False HAS_FLASH_ATTN_V2_CUDA = False if FLASH_ATTENTION: __all__.append(FlashGPT2) __all__.append(FlashNeoXSharded) __all__.append(FlashRWSharded) __all__.append(FlashSantacoderSharded) __all__.append(FlashLlama) __all__.append(IDEFICSSharded) __all__.append(FlashMistral) __all__.append(FlashMixtral) __all__.append(FlashDbrx) __all__.append(FlashPhi) __all__.append(FlashQwen2) __all__.append(FlashStarcoder2) __all__.append(FlashGemma) __all__.append(FlashCohere) MAMBA_AVAILABLE = True try: from text_generation_server.models.mamba import Mamba except ImportError as e: logger.warning(f"Could not import Mamba: {e}") MAMBA_AVAILABLE = False if MAMBA_AVAILABLE: __all__.append(Mamba) def get_model( model_id: str, revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], trust_remote_code: bool, ) -> Model: if dtype is None: # Keep it as default for now and let # every model resolve their own default dtype. dtype = None elif dtype == "float16": dtype = torch.float16 elif dtype == "bfloat16": dtype = torch.bfloat16 else: raise RuntimeError(f"Unknown dtype {dtype}") if speculate is not None: set_speculate(speculate) else: set_speculate(0) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) model_type = config_dict.get("model_type", None) speculator = None if "medusa_num_heads" in config_dict: medusa_model_id = model_id medusa_revision = revision model_id = config_dict["base_model_name_or_path"] revision = "main" speculate_medusa = config_dict["medusa_num_heads"] if speculate is not None: if speculate > speculate_medusa: raise RuntimeError( f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match" ) else: set_speculate(speculate) else: set_speculate(speculate_medusa) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) # Reload model type from parent. model_type = config_dict.get("model_type", None) is_local = Path(medusa_model_id).exists() if not is_local: medusa_config = hf_hub_download( medusa_model_id, revision=medusa_revision, filename="config.json" ) hf_hub_download( medusa_model_id, revision=medusa_revision, filename="medusa_lm_head.safetensors", ) speculator = { "path": Path(medusa_config).parent, "model_paths": ["medusa_lm_head.safetensors"], } else: speculator = { "path": Path(medusa_model_id), "model_paths": ["medusa_lm_head.safetensors"], } method = "medusa" elif model_type == "mlp_speculator": mlp_model_id = model_id mlp_revision = revision model_id = config_dict["base_model_name_or_path"] revision = "main" speculate_mlp = config_dict["n_predict"] if speculate is not None: if speculate > speculate_mlp: raise RuntimeError( f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match" ) else: set_speculate(speculate) else: set_speculate(speculate_mlp) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) # Reload model type from parent. model_type = config_dict.get("model_type", None) is_local = Path(mlp_model_id).exists() extension = ".safetensors" if not is_local: mlp_speculator_config = hf_hub_download( mlp_model_id, revision=mlp_revision, filename="config.json" ) api = HfApi() info = api.model_info(mlp_model_id, revision=mlp_revision) filenames = [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename ] for filename in filenames: hf_hub_download( mlp_model_id, revision=mlp_revision, filename=filename, ) speculator = { "path": Path(mlp_speculator_config).parent, "model_paths": filenames, } else: speculator = Path(mlp_model_id) filenames = [p for p in os.listdir(speculator) if p.endswith(extension)] speculator = {"path": speculator, "model_paths": filenames} method = "mlp_speculator" else: method = "n-gram" speculate = get_speculate() if speculate > 0: logger.info(f"Using speculation {method} with {speculate} input ids.") if model_type is None: # TODO: fix how we determine model type for Mamba if "ssm_cfg" in config_dict: # *only happens in Mamba case model_type = "ssm" else: raise RuntimeError( f"Could not determine model type for {model_id} revision {revision}" ) quantization_config = config_dict.get("quantization_config", None) if quantization_config is not None and quantize is None: method = quantization_config.get("quant_method", None) if method in {"gptq", "awq"}: logger.info(f"Auto selecting quantization method {method}") quantize = method else: logger.info(f"Unknown quantization method {method}") if model_type == "ssm": return Mamba( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_id.startswith("facebook/galactica"): return GalacticaSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if ( model_type == "gpt_bigcode" or model_type == "gpt2" and model_id.startswith("bigcode/") ): if FLASH_ATTENTION: return FlashSantacoderSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError( FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder") ) else: return SantaCoder( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "bloom": return BLOOMSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "mpt": return MPTSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "gpt2": if FLASH_ATTENTION: return FlashGPT2( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "gpt_neox": if FLASH_ATTENTION: return FlashNeoXSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: return GPTNeoxSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "phi": if FLASH_ATTENTION: return FlashPhi( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "phi-msft": if FLASH_ATTENTION: raise NotImplementedError( "Legacy phi-msft is not supported with Flash Attention" ) else: return Phi( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif model_type == "llama" or model_type == "baichuan" or model_type == "phi3": if FLASH_ATTENTION: return FlashLlama( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "gemma": if FLASH_ATTENTION: return FlashGemma( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "cohere": if FLASH_ATTENTION: return FlashCohere( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "dbrx": if FLASH_ATTENTION: return FlashDbrx( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type in ["RefinedWeb", "RefinedWebModel", "falcon"]: if sharded: if FLASH_ATTENTION: if config_dict.get("alibi", False): raise NotImplementedError("sharded is not supported for this model") return FlashRWSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Falcon")) else: if FLASH_ATTENTION and not config_dict.get("alibi", False): return FlashRWSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: return RW( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "mistral": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashMistral( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "mixtral": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashMixtral( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "starcoder2": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashStarcoder2( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError( FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2") ) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "qwen2": sliding_window = config_dict.get("sliding_window", -1) if ( (sliding_window is None or sliding_window == -1) and FLASH_ATTENTION ) or HAS_FLASH_ATTN_V2_CUDA: return FlashQwen2( model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, ) elif sharded: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2")) else: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "opt": return OPTSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "t5": return T5Sharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type == "idefics": if FLASH_ATTENTION: return IDEFICSSharded( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) if model_type == "idefics2": if FLASH_ATTENTION: return Idefics2( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) if model_type == "llava_next": if FLASH_ATTENTION: return LlavaNext( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext")) if sharded: raise NotImplementedError("sharded is not supported for AutoModel") if quantize == "gptq": raise NotImplementedError( "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`" ) if quantize == "awq": raise NotImplementedError("awq quantization is not supported for AutoModel") elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"): raise NotImplementedError("4bit quantization is not supported for AutoModel") elif quantize == "eetq": raise NotImplementedError("Eetq quantization is not supported for AutoModel") if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES: return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES: return Seq2SeqLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) auto_map = config_dict.get("auto_map", None) if trust_remote_code and auto_map is not None: if "AutoModelForCausalLM" in auto_map.keys(): return CausalLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) if "AutoModelForSeq2SeqLM" in auto_map.keys(): return Seq2SeqLM( model_id, revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, ) raise ValueError(f"Unsupported model type {model_type}")