import asyncio import os from grpc import aio from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import Optional, List from bloom_inference.cache import Cache from bloom_inference.model import BLOOM, Batch, BLOOMSharded from bloom_inference.pb import generate_pb2_grpc, generate_pb2 class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): def __init__(self, model: BLOOM, cache: Cache, server_urls: List[str]): self.cache = cache self.model = model self.server_urls = server_urls async def ServiceDiscovery(self, request, context): return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) async def ClearCache(self, request, context): self.cache.clear() return generate_pb2.ClearCacheResponse() async def Generate(self, request, context): batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device) generated_texts, next_batch = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.GenerateResponse( generated_texts=[ generated_text.to_pb() for generated_text in generated_texts ], batch=next_batch.to_pb() if next_batch else None, ) async def GenerateWithCache(self, request, context): if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) > 1: batch = Batch.concatenate(batches) else: batch = batches[0] generated_texts, next_batch = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.GenerateWithCacheResponse( generated_texts=[ generated_text.to_pb() for generated_text in generated_texts ], batch=next_batch.to_pb() if next_batch else None, ) async def GenerateUntilFinished(self, request, context): batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device) generated_texts = [] while not generated_texts: generated_texts, next_batch = self.model.generate_token(batch) batch = next_batch self.cache.set(next_batch) return generate_pb2.GenerateUntilFinishedResponse( generated_texts=[ generated_text.to_pb() for generated_text in generated_texts ], batch=next_batch.to_pb() if next_batch else None, ) async def GenerateUntilFinishedWithCache(self, request, context): if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) > 1: batch = Batch.concatenate(batches) else: batch = batches[0] generated_texts = [] while not generated_texts: generated_texts, next_batch = self.model.generate_token(batch) batch = next_batch self.cache.set(next_batch) return generate_pb2.GenerateUntilFinishedWithCacheResponse( generated_texts=[ generated_text.to_pb() for generated_text in generated_texts ], batch=next_batch.to_pb() if next_batch else None, ) def serve(model_name, sharded, shard_directory): async def serve_inner( model_name: str, sharded: bool = False, shard_directory: Optional[Path] = None, ): unix_socket_template = "unix:///tmp/bloom-inference-{}" if sharded: if shard_directory is None: raise ValueError("shard_directory must be set when sharded is True") model = BLOOMSharded(model_name, shard_directory) server_urls = [ unix_socket_template.format(rank) for rank in range(model.world_size) ] local_url = unix_socket_template.format(model.rank) else: model = BLOOM(model_name) local_url = unix_socket_template.format(0) server_urls = [local_url] server = aio.server() generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( TextGenerationService(model, Cache(), server_urls), server ) SERVICE_NAMES = ( generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, reflection.SERVICE_NAME, ) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(local_url) await server.start() print("Server started at {}".format(local_url)) await server.wait_for_termination() asyncio.run(serve_inner(model_name, sharded, shard_directory))