# Examples of Docker Commands for Gaudi Backend This page gives a list of examples of docker run commands for some of the most popular models. > **Note:** The parameters are chosen for Gaudi2 hardware to maximize performance on this given hardware, please adjust the parameters based on your hardware. For example, if you are using Gaudi3, you may want to increase the batch size. ## Default Precision (BF16) ### Llama3.1-8B on 1 card (BF16) ```bash model=meta-llama/Meta-Llama-3.1-8B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e PREFILL_BATCH_BUCKET_SIZE=2 \ -e BATCH_BUCKET_SIZE=32 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ### Llama3.1-70B 8 cards (BF16) ```bash model=meta-llama/Meta-Llama-3.1-70B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e BATCH_BUCKET_SIZE=256 \ -e PREFILL_BATCH_BUCKET_SIZE=4 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` ### Llama2-7B on 1 Card (BF16) ```bash model=meta-llama/Llama-2-7b-chat-hf hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e PREFILL_BATCH_BUCKET_SIZE=2 \ -e BATCH_BUCKET_SIZE=32 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ### Llama2-70B on 8 cards (BF16) ```bash model=meta-llama/Llama-2-70b-chat-hf hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e BATCH_BUCKET_SIZE=256 \ -e PREFILL_BATCH_BUCKET_SIZE=4 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` ### Llava-v1.6-Mistral-7B on 1 card (BF16) ```bash model=llava-hf/llava-v1.6-mistral-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e PREFILL_BATCH_BUCKET_SIZE=1 \ -e BATCH_BUCKET_SIZE=1 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ --max-total-tokens 8192 --max-batch-size 4 ``` ## FP8 Precision Please refer to the [FP8 Precision](https://huggingface.co/docs/text-generation-inference/backends/gaudi_new#how-to-use-different-precision-formats) section for more details. You need to measure the statistics of the model first before running the model in FP8 precision. ## Llama3.1-8B on 1 Card (FP8) ```bash model=meta-llama/Meta-Llama-3.1-8B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e PREFILL_BATCH_BUCKET_SIZE=2 \ -e BATCH_BUCKET_SIZE=32 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ## Llama3.1-70B on 8 cards (FP8) ```bash model=meta-llama/Meta-Llama-3.1-70B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e BATCH_BUCKET_SIZE=256 \ -e PREFILL_BATCH_BUCKET_SIZE=4 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` ## Llama2-7B on 1 Card (FP8) ```bash model=meta-llama/Llama-2-7b-chat-hf hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e PREFILL_BATCH_BUCKET_SIZE=2 \ -e BATCH_BUCKET_SIZE=32 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ## Llama2-70B on 8 Cards (FP8) ```bash model=meta-llama/Llama-2-70b-chat-hf hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HF_TOKEN=$hf_token \ -e MAX_TOTAL_TOKENS=2048 \ -e BATCH_BUCKET_SIZE=256 \ -e PREFILL_BATCH_BUCKET_SIZE=4 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` ## Llava-v1.6-Mistral-7B on 1 Card (FP8) ```bash model=llava-hf/llava-v1.6-mistral-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e PREFILL_BATCH_BUCKET_SIZE=1 \ -e BATCH_BUCKET_SIZE=1 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ --max-total-tokens 8192 --max-batch-size 4 ``` ## Llava-v1.6-Mistral-7B on 8 Cards (FP8) ```bash model=llava-hf/llava-v1.6-mistral-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e PREFILL_BATCH_BUCKET_SIZE=1 \ -e BATCH_BUCKET_SIZE=1 \ ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ --max-total-tokens 8192 --max-batch-size 4 ```