#include #include #include #include #include #include "backend.h" #include "hardware.h" void huggingface::tgi::backends::InitializeBackend() { if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) { std::string log_level(TRTLLM_LOG_LEVEL_CSTR); std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) { return std::tolower(c); }); if (log_level == "debug") spdlog::set_level(spdlog::level::debug); else spdlog::set_level(spdlog::level::info); } SPDLOG_INFO("Initializing Backend..."); nvmlInit_v2(); initTrtLlmPlugins(); SPDLOG_INFO("Backend Executor Version: {}", tle::version()); const auto numGpus = huggingface::hardware::cuda::GetNumDevices(); if (numGpus.has_value()) { SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value()); } else { SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system"); } } [[nodiscard]] tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) { tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1); // Retrieve the compute capabilities to enable some options at runtime const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities(); // Single engine (TP = PP = 1) -> using leader mode (no MPI involved) if (config["/pretrained_config/mapping/world_size"_json_pointer].get() == 1) { SPDLOG_INFO("Detected single engine deployment, using leader mode"); execConfig.setParallelConfig(tle::ParallelConfig( tle::CommunicationType::kMPI, tle::CommunicationMode::kLEADER, std::nullopt, std::nullopt, std::nullopt )); } else { // Multiple engines -> using orchestrator mode (MPI involved) SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode"); execConfig.setParallelConfig(tle::ParallelConfig( tle::CommunicationType::kMPI, tle::CommunicationMode::kORCHESTRATOR, std::nullopt, std::nullopt, tle::OrchestratorConfig(true, workerPath, nullptr, true) )); } // Define some configuration variables execConfig.setKvCacheConfig(tle::KvCacheConfig(true)); execConfig.setEnableChunkedContext(computeCapabilities.isPostAmpere()); return execConfig; } tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig( const uint32_t topK, const float_t topP, const float_t temperature, const float_t repetition_penalty, const float_t frequency_penalty, const uint64_t seed) noexcept { return tle::SamplingConfig( 1, // TGI only use a single beam topK, topP, std::nullopt, std::nullopt, std::nullopt, seed, temperature, temperature, std::nullopt, repetition_penalty, std::nullopt, frequency_penalty ); } huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend( const std::filesystem::path &enginesFolder, const std::filesystem::path &executorWorker ) : config(json::parse(std::ifstream(enginesFolder / "config.json"))), executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY, GetExecutorConfig(config, executorWorker.string())) { SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref()); // Cache variables maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get(); } [[nodiscard("Returned number of requests needs to be consumed")]] size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const { const auto numResponses = executor.getNumResponsesReady(); #ifndef NDEBUG if(numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses); #endif return numResponses; } [[nodiscard("Returned request id needs to be provided back to gather generated tokens")]] tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit( const std::vector &tokens, const uint32_t maxNewTokens, const int32_t topK, const float_t topP, const float_t temperature, const float_t repetition_penalty, const float_t frequency_penalty, const uint64_t seed ) { const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast(maxNumTokens - tokens.size())); #ifndef NDEBUG { const auto &iterations = executor.getLatestIterationStats(); const auto &lastIteration = iterations.front(); SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests); SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetition_penalty, frequency_penalty, seed); SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked); } #endif const auto sampling = GetSamplingConfig(topK, topP, temperature, repetition_penalty, frequency_penalty, seed); const auto maxNewTokensChecked_ = static_cast(maxNewTokensChecked); return executor.enqueueRequest(tle::Request{tokens, maxNewTokensChecked_, true, sampling, OUTPUT_CONFIG}); } std::vector huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() { return executor.awaitResponses(); }