import torch import torch.distributed from transformers import AutoTokenizer, PreTrainedTokenizerBase from typing import Optional from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.models.custom_modeling.mamba_modeling import ( MambaConfig, MambaForCausalLM, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class MambaCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device) batch.keys_head_dim_last = False return batch class Mamba(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, _rank, _world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/gpt-neox-20b", revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = MambaConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) tokenizer.bos_token_id = config.bos_token_id tokenizer.eos_token_id = config.eos_token_id tokenizer.pad_token = tokenizer.eos_token config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) model = MambaForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, )