import os import tempfile import itertools import time import glob import torch from dataclasses import dataclass from opentelemetry import trace from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, AutoConfig from typing import Optional, Tuple, List, Type, Dict import text_generation_server.habana_quantization_env as hq_env import habana_frameworks.torch as htorch from habana_frameworks.torch.hpu import wrap_in_hpu_graph from contextlib import nullcontext from optimum.habana.utils import HabanaProfile, to_gb_rounded from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES from optimum.habana.checkpoint_utils import ( get_repo_root, model_on_meta, write_checkpoints_json, ) from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.models import Model from text_generation_server.models.types import ( Batch, PrefillTokens, Generation, GeneratedText, TopTokens, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import HeterogeneousNextTokenChooser, StoppingCriteria, Sampling, make_tokenizer_optional, is_tokenizer_transparent from loguru import logger from functools import wraps tracer = trace.get_tracer(__name__) if 'GRAPH_VISUALIZATION' in os.environ: for f in glob.glob('.graph_dumps/*'): os.remove(f) MAX_TOTAL_TOKENS = int(os.getenv("MAX_TOTAL_TOKENS", "0")) BATCH_BUCKET_SIZE = int(os.environ.get('BATCH_BUCKET_SIZE', 8)) PAD_SEQUENCE_TO_MULTIPLE_OF = int(os.environ.get('PAD_SEQUENCE_TO_MULTIPLE_OF', 128)) PREFILL_BATCH_BUCKET_SIZE = int(os.environ.get('PREFILL_BATCH_BUCKET_SIZE', 4)) DBG_TRACE_FILENAME = os.environ.get('DBG_TRACE_FILENAME') START_TS = None def count_hpu_graphs(): return len(glob.glob('.graph_dumps/*PreGraph*')) def dbg_trace(tag, txt): global START_TS if DBG_TRACE_FILENAME is not None and int(os.getenv("RANK", 0)) == 0: if START_TS is None: START_TS = time.perf_counter() time_offset = time.perf_counter() - START_TS mem_stats = htorch.hpu.memory.memory_stats() mem_used = to_gb_rounded(mem_stats['InUse']) max_mem_used = to_gb_rounded(mem_stats['MaxInUse']) print(f'ts:{time_offset:.3f}s g:{count_hpu_graphs()} mu:{mem_used:.1f}GB ' f'mmu:{max_mem_used:.1f}GB | {tag} | {txt}', flush=True, file=open(DBG_TRACE_FILENAME, 'a')) def round_up(number, k): return (number + k - 1) // k * k def prepare_memory(new_bs, tensor, inplace): if inplace: return tensor else: return tensor.new_empty((new_bs,) + tensor.shape[1:]) def move_data(dst_tensor, chunk_size, indices, src_tensors): batch_dim = 0 bs = dst_tensor.size(batch_dim) assert bs % chunk_size == 0, 'Batch dim must be divisible by chunk size!' result = dst_tensor if chunk_size > 1: dst_tensor = dst_tensor.view(bs // chunk_size, chunk_size, *dst_tensor.shape[1:]) htorch.core.mark_step() for ind, src_t in zip(indices, src_tensors): if chunk_size > 1: src_t = src_t.view(bs // chunk_size, chunk_size, *src_t.shape[1:]) for dst_idx, src_idx in ind: src_data = torch.index_select(src_t, batch_dim, src_idx) dst_tensor.index_copy_(batch_dim, dst_idx, src_data) htorch.core.mark_step() return result def generate_shift_chunks(offset): chunk_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] result = [] while offset != 0: sign = 1 if offset > 0 else -1 best_chunk = min((abs(offset - sign * c), sign * c) for c in chunk_sizes)[1] result.append(best_chunk) offset = offset - best_chunk return result def roll(tensor, dim, chunks): dbg_trace('ROLL', f'shape:{list(tensor.shape)} dim:{dim} chunks:{chunks}') for c in chunks: tensor = torch.roll(tensor, c, dim) htorch.core.mark_step() return tensor def shift(tensor, dim, offset): assert dim < 0, 'Only negative dims are supported' if offset == 0: return tensor chunks = generate_shift_chunks(offset) tensor = roll(tensor, dim, chunks) return tensor def shift_all(srcs, dim, offsets): return [shift(src, dim, offset) for src, offset in zip(srcs, offsets)] def remove_kv_cache_from_output(module): orig_fwd = module.forward @wraps(orig_fwd) def forward(*args, **kwargs): if kwargs["past_key_values"] is not None: kwargs["return_dict"] = False output = orig_fwd(*args, **kwargs) first_value, second_value, *_ = output if first_value.nelement() < 2: return second_value else: return first_value else: kwargs["return_dict"] = True return orig_fwd(*args, **kwargs) module.forward = forward return module def pad_tensors(tensors, paddings, dim, value): for i, (tensor, padding) in enumerate(zip(tensors, paddings)): if padding > 0: pad_shape = (0, 0, 0, padding) if dim == -2 else (0, padding) tensors[i] = torch.nn.functional.pad(tensor, pad_shape, value=value) htorch.core.mark_step() return tensors @dataclass class CausalLMRequest: idx: int data: generate_pb2.Request input_length: int prefix_offset: int read_offset: int stopping_criteria: StoppingCriteria all_input_ids: torch.Tensor @classmethod def from_pb(cls, idx: int, data: generate_pb2.Request, tokenizer: PreTrainedTokenizerBase): return cls( idx=idx, data=data, input_length=None, prefix_offset=None, read_offset=None, stopping_criteria=StoppingCriteria.from_pb(data.stopping_parameters, tokenizer), all_input_ids=None,) def update_idx(self, new_idx): prev = self.idx self.idx = new_idx return (new_idx, prev) @dataclass class CausalLMBatch(Batch): batch_id: int requests: List[CausalLMRequest] # Decoder values input_ids: torch.Tensor attention_mask: torch.Tensor position_ids: torch.Tensor past_key_values: Optional[List[Tuple]] # Generation helpers next_token_chooser: HeterogeneousNextTokenChooser top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor input_length: int logits = None past = None def to_pb(self) -> generate_pb2.CachedBatch: return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.data.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, ) @classmethod def recombine(cls, batches: List["CausalLMBatch"], pad_token_id: int) -> "CausalLMBatch": total_requests = sum(len(b) for b in batches) new_bs = round_up(total_requests, BATCH_BUCKET_SIZE) batch_id = batches[0].batch_id device = batches[0].input_ids.device input_lengths = [b.input_length for b in batches] max_input_length = max(input_lengths) offsets = [max_input_length - b.input_length for b in batches] padding = [b.right_padding for b in batches] # For prefill there is a space allocated only for first token # Need to add padding to the max total tokens before first decode extra_padding = [MAX_TOTAL_TOKENS - b.seq_length for b in batches] moves_needed = [total_requests - len(b) if b.batch_size == new_bs else total_requests for b in batches] target_batch_idx = min(enumerate(moves_needed), key=lambda idx_val: idx_val[1])[0] # TODO: Add support for changing max seq len, i.e. due to output length bucketing # FIXME: max_seq_len for non optimized code if len(batches) > 1: scenario = 'CONCAT' elif batches[target_batch_idx].batch_size != new_bs: scenario = 'RESHAPE' elif padding[target_batch_idx] <= 0: scenario = 'SHIFT' offsets = [b.max_input_length - max_input_length for b in batches] max_input_length = max(b.max_input_length for b in batches) else: # Nothing to do return batches[0] inplace = (batches[target_batch_idx].batch_size == new_bs) dbg_trace( scenario, f'bs:{[b.batch_size for b in batches]}->{new_bs}' f' reqs:{[len(b) for b in batches]}' f' offsets:{offsets}' f' input_lengths:{input_lengths}' f' cur_padding:{padding}' f' inplace:{inplace}') grouped_requests = [[req for req in batch.requests] for batch in batches] flat_requests = list(itertools.chain(*grouped_requests)) if inplace: # The data is already present in the batch. No need to move it grouped_requests[target_batch_idx] = [] free_indices = batches[target_batch_idx].free_indices() else: free_indices = itertools.count(0) def to_tensors(ind): return (torch.tensor(ind[0], device=device), torch.tensor(ind[1], device=device)) indices = [[to_tensors(req.update_idx(next(free_indices))) for req in batch_reqs] for batch_reqs in grouped_requests] chunk_size = batches[0].past_key_values[0][0].size(0) // batches[0].batch_size num_layers = len(batches[0].past_key_values) past_key_values_type = type(batches[0].past_key_values) seq_dim = -1 if batches[0].past_key_values[0][0].size(-1) != batches[0].past_key_values[0][1].size(-1): # Case for Bloom key_dim = -1 else: key_dim = -2 value_dim = -2 for b in batches: b.past_key_values = list(b.past_key_values) src = [b.input_ids for b in batches] for b in batches: del b.input_ids src = pad_tensors(src, extra_padding, seq_dim, pad_token_id) src = shift_all(src, seq_dim, offsets) input_ids = prepare_memory(new_bs, src[target_batch_idx], inplace) input_ids = move_data(input_ids, 1, indices, src) src = [b.attention_mask for b in batches] for b in batches: del b.attention_mask src = pad_tensors(src, extra_padding, seq_dim, 0) src = shift_all(src, seq_dim, offsets) attention_mask = prepare_memory(new_bs, src[target_batch_idx], inplace) attention_mask = move_data(attention_mask, 1, indices, src) src = [b.position_ids for b in batches] for b in batches: del b.position_ids position_ids = prepare_memory(new_bs, src[target_batch_idx], inplace) position_ids = move_data(position_ids, 1, indices, src) src = None src_keys = [[b.past_key_values[layer_num][0] for layer_num in range(num_layers)] for b in batches] src_values = [[b.past_key_values[layer_num][1] for layer_num in range(num_layers)] for b in batches] for b in batches: del b.past_key_values src_keys = [torch.stack(src) for src in src_keys] htorch.core.mark_step() src_keys = pad_tensors(src_keys, extra_padding, key_dim, 0) src_keys = shift_all(src_keys, key_dim, offsets) src_keys = [[t.squeeze(0).clone() for t in torch.split(src, 1)] for src in src_keys] htorch.core.mark_step() dst_keys = [prepare_memory(new_bs * chunk_size, prev, inplace) for prev in src_keys[target_batch_idx]] dst_keys = [move_data(dst_keys[layer_num], chunk_size, indices, [src[layer_num] for src in src_keys]) for layer_num in range(num_layers)] src_values = [torch.stack(src) for src in src_values] htorch.core.mark_step() src_values = pad_tensors(src_values, extra_padding, value_dim, 0) src_values = shift_all(src_values, value_dim, offsets) src_values = [[t.squeeze(0).clone() for t in torch.split(src, 1)] for src in src_values] htorch.core.mark_step() dst_values = [prepare_memory(new_bs * chunk_size, prev, inplace) for prev in src_values[target_batch_idx]] dst_values = [move_data(dst_values[layer_num], chunk_size, indices, [src[layer_num] for src in src_values]) for layer_num in range(num_layers)] past_key_values = past_key_values_type(zip(dst_keys, dst_values)) top_n_tokens = [r.data.top_n_tokens for r in flat_requests] top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( [r.data.parameters for r in flat_requests], batches[0].next_token_chooser.dtype, batches[0].next_token_chooser.device ) max_seq_len = attention_mask.size(1) input_length = max_input_length htorch.core.mark_step() return cls( batch_id=batch_id, requests=flat_requests, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, next_token_chooser=next_token_chooser, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, input_length=input_length, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, is_optimized_for_gaudi: bool = False, ) -> "CausalLMBatch": dbg_trace('FROM_PB', f'num_reqs:{len(pb.requests)}') requests = [CausalLMRequest.from_pb(idx, req, tokenizer) for idx, req in enumerate(pb.requests)] max_input_length = max(r.data.truncate for r in requests) max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests) # TODO: Add support for sparse batches top_n_tokens = [r.top_n_tokens for r in pb.requests] top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64) next_token_chooser = HeterogeneousNextTokenChooser.from_pb([r.parameters for r in pb.requests], dtype, device) # TODO: by tokenizing all inputs at once we loose information on actual input lengths # this means that we cannot shift inputs to the left after a long input sequence # was filtered out new_bs = round_up(len(requests), PREFILL_BATCH_BUCKET_SIZE) dummy_inputs = ["?"] * (new_bs - len(requests)) tokenized_inputs = tokenizer( [r.data.inputs for r in requests] + dummy_inputs, return_tensors="pt", padding="longest", return_token_type_ids=False, truncation=True, max_length=max_input_length, ) input_len = tokenized_inputs["input_ids"].shape[1] bucket_size = max_input_length left_padding = max_input_length - input_len if input_len < max_input_length and PAD_SEQUENCE_TO_MULTIPLE_OF != 0: assert PAD_SEQUENCE_TO_MULTIPLE_OF <= max_input_length, "PAD_SEQUENCE_TO_MULTIPLE_OF cannot be higher than max_input_length" bucket_size = round_up(input_len + 1, PAD_SEQUENCE_TO_MULTIPLE_OF) - 1 left_padding = bucket_size - input_len input_ids = tokenized_inputs["input_ids"] attention_mask = tokenized_inputs["attention_mask"] if is_optimized_for_gaudi: # Allocate space for first token input_ids = torch.nn.functional.pad( input_ids, (left_padding, 1), value=tokenizer.pad_token_id ) attention_mask = torch.nn.functional.pad( attention_mask, (left_padding, 1), value=0 ) all_input_ids = torch.nn.functional.pad( input_ids, (0, max_new_tokens), value=tokenizer.pad_token_id ).T.split(1, dim=1) else: all_input_ids = input_ids.clone().T.split(1, dim=1) # New input length after left padding input_len = bucket_size for r in requests: r.input_length = input_len r.prefix_offset = input_len - 5 r.read_offset = input_len r.all_input_ids = all_input_ids[r.idx] input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) htorch.core.mark_step() return cls( batch_id=pb.id, requests=requests, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=None, next_token_chooser=next_token_chooser, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, input_length=input_len, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]: dbg_trace('FILTER', f'num_reqs:{len(self.requests)} -> {len(request_ids)}') request_ids = set(request_ids) self.requests = [req for req in self.requests if req.data.id in request_ids] return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["CausalLMBatch"], pad_token_id: int = 0) -> "CausalLMBatch": return cls.recombine(batches, pad_token_id) def __len__(self): return len(self.requests) @property def max_input_length(self): return max(req.input_length for req in self.requests) @property def batch_size(self): return self.attention_mask.size(0) @property def seq_length(self): return self.attention_mask.size(1) @property def right_padding(self): return self.seq_length - self.input_length # Maximum number of tokens this batch will grow to @property def max_tokens(self): max_total_tokens = self.attention_mask.size(1) return len(self.requests) * max_total_tokens def free_indices(self): used = set(req.idx for req in self.requests) for i in range(self.batch_size): if i in used: continue yield i class CausalLM(Model): def __init__( self, model_id: str, revision: Optional[str] = None, dtype: Optional[torch.dtype] = None, ): device = torch.device("hpu") if hq_env.is_quantization_enabled: htorch.core.hpu_set_env() dtype = torch.bfloat16 if dtype is None else dtype from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi adapt_transformers_to_gaudi() tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", ) make_tokenizer_optional(tokenizer) model_kwargs = { "revision": revision, } world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true" self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true" if world_size > 1: import habana_frameworks.torch.hpu as torch_hpu # Get world size, rank and local rank from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu world_size, rank, local_rank = initialize_distributed_hpu() import deepspeed # Initialize process(es) for DeepSpeed deepspeed.init_distributed(dist_backend="hccl") logger.info( "DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank) ) config = AutoConfig.from_pretrained(model_id, **model_kwargs) load_to_meta = model_on_meta(config) if load_to_meta: # Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load with deepspeed.OnDevice(dtype=dtype, device="meta"): model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype) else: get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK")) # TODO: revisit placement on CPU when auto-injection is possible with deepspeed.OnDevice(dtype=dtype, device="cpu"): model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs) model = model.eval() # Initialize the model ds_inference_kwargs = {"dtype": dtype} ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size} ds_inference_kwargs["enable_cuda_graph"] = False if load_to_meta: # model loaded to meta is managed differently checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w") write_checkpoints_json(model_id, local_rank, checkpoints_json) ds_inference_kwargs["checkpoint"] = checkpoints_json.name model = deepspeed.init_inference(model, **ds_inference_kwargs) model = model.module model = self.prepare_model_for_quantization(model) model = remove_kv_cache_from_output(model) if self.enable_hpu_graph: model = wrap_in_hpu_graph(model, disable_tensor_cache=True) else: get_repo_root(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, ) model = self.prepare_model_for_quantization(model) model = model.eval().to(device) # wrap in hpu_graph only if self.enable_hpu_graph is set model = remove_kv_cache_from_output(model) if self.enable_hpu_graph: model = wrap_in_hpu_graph(model, disable_tensor_cache=True) model = self.setup_quantization(model) if model.config.model_type in MODELS_OPTIMIZED_WITH_STATIC_SHAPES: self.is_optimized_for_gaudi = True else: self.is_optimized_for_gaudi = False if tokenizer.pad_token_id is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None: tokenizer.pad_token_id = model.config.eos_token_id elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) kwargs = { "use_cache": True, "return_dict": True, } if model.config.model_type == "llama": kwargs["attn_softmax_bf16"] = True kwargs["trim_logits"] = True super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, kwargs=kwargs, ) prof_ranks = [int(val) for val in os.getenv("PROF_RANKS", "0").split(',')] self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0")) if rank in prof_ranks else 0 self.profiling_steps = int(os.getenv("PROF_STEP", "0")) if rank in prof_ranks else 0 self.profiling_wait_steps = int(os.getenv("PROF_WAITSTEP", "0")) record_shapes = os.getenv("PROF_RECORD_SHAPES", "false").lower() == "true" output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile") if self.profiling_steps > 0: self.hb_profiler = HabanaProfile( wait=self.profiling_wait_steps, warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir, record_shapes=record_shapes ) self.hb_profiler.start() else: self.hb_profiler = None self.step = 0 def setup_quantization(self, model): if hq_env.is_quantization_enabled: htorch.core.quantization._mark_params_as_const(model) htorch.core.quantization._check_params_as_const(model) htorch.core.hpu_initialize(model) return model def prepare_model_for_quantization(self, model): if hq_env.is_quantization_enabled: if model.config.model_type == "llama": self.patch_scoped_linear_all_reduce(model) import habana_quantization_toolkit habana_quantization_toolkit.prep_model(model) return model def finish_quantization_measurements(self, model): if hq_env.is_quantization_enabled: import habana_quantization_toolkit habana_quantization_toolkit.finish_measurements(self.model) return model def patch_scoped_linear_all_reduce(self, model): from deepspeed.module_inject.layers import LinearAllreduce from optimum.habana.transformers.models.modeling_all_models import ScopedLinearAllReduce for name, module in model.named_children(): if type(module) is LinearAllreduce: SL = ScopedLinearAllReduce(mod=module) setattr(model, name, SL) self.patch_scoped_linear_all_reduce(module) @property def batch_type(self) -> Type[CausalLMBatch]: return CausalLMBatch def decode(self, generated_ids: List[int]) -> str: return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) def decode_token( self, all_input_ids: List[int], prefix_offset: int = 0, read_offset: int = 0, ) -> Tuple[str, int, int]: if is_tokenizer_transparent(self.tokenizer): new_text = self.tokenizer.decode(all_input_ids[read_offset:], skip_special_tokens=False) return new_text, read_offset, len(all_input_ids) else: return super().decode_token(all_input_ids, prefix_offset, read_offset) def forward( self, input_ids, attention_mask, position_ids, token_idx: Optional = None, past_key_values: Optional = None, bypass_hpu_graph: Optional = None, ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: # Model Forward kwargs = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, } if self.is_optimized_for_gaudi: kwargs["token_idx"] = token_idx if self.has_position_ids: kwargs["position_ids"] = position_ids if bypass_hpu_graph != None: kwargs["bypass_hpu_graphs"] = bypass_hpu_graph kwargs.update(self.kwargs) if past_key_values is not None: return self.model.forward(**kwargs) else: outputs = self.model.forward(**kwargs) return outputs.logits, outputs.past_key_values @tracer.start_as_current_span("generate_token") def generate_token(self, batches: List[CausalLMBatch]) -> Tuple[List[Generation], Optional[CausalLMBatch]]: # Results generations: List[Generation] = [] prev_batches = [] requests_to_generate = [] # In order to pipeline any actions on CPU we perform the operation in 3 main stages: # Stage 1. Collect next token ids of any previously started generations for batch_id, batch in enumerate(batches): if batch.logits is not None: logits = batch.logits past = batch.past prefill = batch.past_key_values is None if self.is_optimized_for_gaudi: if prefill: # no right padding for prefill token_idx = torch.tensor(batch.attention_mask.shape[-1] - 1).to(self.device) else: token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device) else: token_idx = None # Select next token input_length = batch.input_length if self.is_optimized_for_gaudi and logits.shape[-2] > 1: next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser( batch.input_ids[:, :token_idx], logits[:, input_length - 1: input_length, :].squeeze(-2) ) else: next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser( batch.input_ids[:, :token_idx], logits.squeeze(-2) ) batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, ) prev_batches.append({ 'next_token_ids': next_token_ids, 'next_token_logprobs': next_token_logprobs, }) for req_idx, req in enumerate(batch.requests): requests_to_generate.append({ 'req': req, 'prev_req_idx': req.idx, 'batch_id': batch_id, 'seed': batch.next_token_chooser.seeds[req_idx], 'do_sample': batch.next_token_chooser.do_sample[req_idx], 'top_n_tokens': batch.top_n_tokens[req_idx], 'top_token_ids': batch_top_token_ids[req_idx], 'top_token_logprobs': batch_top_token_logprobs[req_idx], }) htorch.core.mark_step() if token_idx is None: batch.input_ids[:, 0] = next_token_ids[:, 0] else: batch.input_ids.index_copy_(1, token_idx.cpu(), next_token_ids.unsqueeze(1)) # Slice unused values from prefill, use it to store next token if token_idx is None: batch.input_ids = batch.input_ids[:, :1] # Update attention_mask as we added a new token to input_ids if self.is_optimized_for_gaudi: batch.attention_mask.index_fill_(1, token_idx, 1) else: batch.attention_mask[:, -batch.padding_right_offset] = 1 # Adjust lengths batch.input_length += 1 # Update position_ids if prefill: batch.position_ids = batch.position_ids[:, token_idx - 1: token_idx] + 1 else: batch.position_ids += 1 # Update past key values if prefill: batch.past_key_values = past htorch.core.mark_step() # Stage 2. Prepare new batch for speculative scheduling if len(batches) > 1: batch = self.batch_type.concatenate(batches, self.tokenizer.pad_token_id) else: batch = batches[0] prefill = batch.past_key_values is None # Check if we need to do any bookkeeping first if not prefill: batch = batch.__class__.recombine([batch], self.tokenizer.pad_token_id) scenario = 'PREFILL' if prefill else 'GENERATE' dbg_trace( scenario, f'bs:{batch.batch_size} num_reqs:{len(batch.requests)} seq_len:{batch.seq_length} padding:{batch.right_padding}') assert batch.right_padding > 0, 'No more room for next token!' if self.is_optimized_for_gaudi: if prefill: # no right padding for prefill token_idx = torch.tensor(batch.attention_mask.shape[-1] - 1).to(self.device) else: token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device) attention_mask = batch.attention_mask else: token_idx = None # slice the attention mask to the correct shape # TODO fix me! attention_mask = batch.attention_mask[:, : -batch.padding_right_offset] if not prefill and token_idx is not None: input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1) else: input_ids = batch.input_ids if prefill: batch.logits, batch.past = self.forward( input_ids, attention_mask, batch.position_ids, token_idx, batch.past_key_values, bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None ) else: batch.logits = self.forward( input_ids, attention_mask, batch.position_ids, token_idx, batch.past_key_values, bypass_hpu_graph=prefill and self.limit_hpu_graph if self.enable_hpu_graph else None ) htorch.core.mark_step() # Stage 3. Finish and return previous generations stopped = len(requests_to_generate) > 0 for prev_batch in prev_batches: prev_batch['next_token_logprobs'] = prev_batch['next_token_logprobs'].tolist() prev_batch['next_token_ids_cpu'] = prev_batch['next_token_ids'].cpu() htorch.core.mark_step() for req_data in requests_to_generate: req = req_data['req'] i = req_data['prev_req_idx'] prev_batch_id = req_data['batch_id'] assert len(prev_batches) > prev_batch_id next_token_ids_cpu = prev_batches[prev_batch_id]['next_token_ids_cpu'] next_token_logprobs = prev_batches[prev_batch_id]['next_token_logprobs'] request = req.data input_length = req.input_length prefix_offset = req.prefix_offset read_offset = req.read_offset do_sample = req_data['do_sample'] seed = req_data['seed'] stopping_criteria = req.stopping_criteria all_input_ids = req.all_input_ids next_token_id = next_token_ids_cpu[i] next_token_logprob = next_token_logprobs[i] top_n_tokens = req_data['top_n_tokens'] top_token_ids = req_data['top_token_ids'] top_token_logprobs = req_data['top_token_logprobs'] # Append next token to all tokens if self.is_optimized_for_gaudi: all_input_ids[input_length] = next_token_id else: all_input_ids = torch.cat([all_input_ids, next_token_id]) new_input_length = input_length + 1 # Generated token next_token_text, prefix_offset, read_offset = self.decode_token( all_input_ids[0:new_input_length, 0], prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria( next_token_id, next_token_text, ) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Decode generated tokens output_text = self.decode( all_input_ids[new_input_length - stopping_criteria.current_tokens: new_input_length, 0] ) generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed if do_sample else None, ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: # Remove generated token to only have prefill and add nan for first prompt token prefill_logprobs = [float("nan")] + next_token_logprobs prefill_token_ids = all_input_ids[0: new_input_length - 1] prefill_texts = self.tokenizer.batch_decode( prefill_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts) else: prefill_tokens = None if top_n_tokens > 0: toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids] top_tokens = TopTokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) else: top_tokens = None generation = Generation( request.id, prefill_tokens, next_token_id, next_token_logprob, next_token_text, next_token_id in self.all_special_ids, generated_text, top_tokens, ) generations.append(generation) req.all_input_ids = all_input_ids req.input_length = new_input_length req.prefix_offset = prefix_offset req.read_offset = read_offset htorch.core.mark_step() self.step = self.step + 1 if self.hb_profiler is not None: if self.step > self.profiling_wait_steps + self.profiling_warmup_steps + self.profiling_steps: self.hb_profiler.stop() else: self.hb_profiler.step() return generations, batch if not stopped else None