# Request Parameters for Text Generation Inference Text Generation Inference support different parameters to control the generation, defining them in the `parameters`` attribute of the payload. ```bash curl https://j4xhm53fxl9ussm8.us-east-1.aws.endpoints.huggingface.cloud \ -X POST \ -d '{"inputs":"Once upon a time,", "parameters": {"max_new_tokens": 256}}' \ -H "Authorization: Bearer " \ -H "Content-Type: application/json" ``` As of today, the following parameters are supported: - `temperature`: Controls randomness in the model. Lower values will make the model more deterministic and higher values will make the model more random. Default value is 1.0. - `max_new_tokens`: The maximum number of tokens to generate. Default value is 20, max value is 512. - `repetition_penalty`: Controls the likelihood of repetition. Default is `null`. - `seed`: The seed to use for random generation. Default is `null`. - `stop`: A list of tokens to stop the generation. The generation will stop when one of the tokens is generated. - `top_k`: The number of highest probability vocabulary tokens to keep for top-k-filtering. Default value is `null`, which disables top-k-filtering. - `top_p`: The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling, default to `null` - `do_sample`: Whether or not to use sampling; use greedy decoding otherwise. Default value is `false`. - `best_of`: Generate best_of sequences and return the one if the highest token logprobs, default to `null`. - `details`: Whether or not to return details about the generation. Default value is `false`. - `return_full_text`: Whether or not to return the full text or only the generated part. Default value is `false`. - `truncate`: Whether or not to truncate the input to the maximum length of the model. Default value is `true`. - `typical_p`: The typical probability of a token. Default value is `null`. - `watermark`: The watermark to use for the generation. Default value is `false`.