# Examples of Docker Commands for Gaudi Backend This page gives a list of examples of docker run commands for some of the most popular models. > **Note:** The parameters are chosen for Gaudi2 hardware to maximize performance on this given hardware, please adjust the parameters based on your hardware. For example, if you are using Gaudi3, you may want to increase the batch size. ## Default Precision (BF16) ### Llama3.1-8B on 1 card (BF16) ```bash model=meta-llama/Meta-Llama-3.1-8B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \ --model-id $model \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ### Llama3.1-70B 8 cards (BF16) ```bash model=meta-llama/Meta-Llama-3.1-70B-Instruct hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \ --model-id $model \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` ### Llava-v1.6-Mistral-7B on 1 card (BF16) ```bash model=llava-hf/llava-v1.6-mistral-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \ --model-id $model \ --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ --max-total-tokens 8192 --max-batch-size 4 ``` ## FP8 Precision You could also set kv cache dtype to FP8 when launching the server, fp8_e4m3fn is supported in Gaudi ## Llama3-8B on 1 Card (FP8) ```bash model=RedHatAI/Meta-Llama-3-8B-Instruct-FP8-KV hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \ --model-id $model \ --kv-cache-dtype fp8_e4m3fn \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 2048 --max-batch-size 32 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` ## Llama3-70B on 8 cards (FP8) ```bash model=RedHatAI/Meta-Llama-3-70B-Instruct-FP8 hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ --cap-add=sys_nice \ --ipc=host \ -v $volume:/data \ -e HF_TOKEN=$hf_token \ ghcr.io/huggingface/text-generation-inference:3.3.4-gaudi \ --model-id $model \ --kv-cache-dtype fp8_e4m3fn \ --sharded true --num-shard 8 \ --max-input-tokens 1024 --max-total-tokens 2048 \ --max-batch-prefill-tokens 4096 --max-batch-size 256 \ --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ```