# based on https://github.com/Dao-AILab/flash-attention/blob/main/.github/workflows/publish.yml name: Build wheels on: workflow_dispatch: push: branches: - main pull_request: jobs: build_wheels: name: Build Wheel runs-on: ${{ matrix.os }} strategy: fail-fast: false matrix: # Using ubuntu-20.04 instead of 22.04 for more compatibility (glibc). Ideally we'd use the # manylinux docker image, but I haven't figured out how to install CUDA on manylinux. os: [ubuntu-20.04] python-version: [ # "3.7", "3.8", "3.9", "3.10", "3.11", ] torch-version: [ # "1.12.1", "1.13.1", "2.0.1", "2.1.2", "2.2.2", "2.3.0", ] cuda-version: [ # "11.8.0", "12.2.2", ] # We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not. # Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI. # Without this we get import error (undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationESs) # when building without C++11 ABI and using it on nvcr images. cxx11_abi: [ # "FALSE", "TRUE", ] exclude: # see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix # Pytorch <= 1.12 does not support Python 3.11 - torch-version: "1.12.1" python-version: "3.11" # Pytorch >= 2.0 only supports Python >= 3.8 - torch-version: "2.0.1" python-version: "3.7" - torch-version: "2.1.2" python-version: "3.7" - torch-version: "2.2.2" python-version: "3.7" - torch-version: "2.3.0" python-version: "3.7" # Pytorch <= 2.0 only supports CUDA <= 11.8 - torch-version: "1.12.1" cuda-version: "12.2.2" - torch-version: "1.13.1" cuda-version: "12.2.2" - torch-version: "2.0.1" cuda-version: "12.2.2" steps: - name: Checkout uses: actions/checkout@v3 - name: Set up Python uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Set CUDA and PyTorch versions run: | echo "MATRIX_CUDA_VERSION=$(echo ${{ matrix.cuda-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV echo "MATRIX_TORCH_VERSION=$(echo ${{ matrix.torch-version }} | awk -F \. {'print $1 "." $2'})" >> $GITHUB_ENV echo "MATRIX_PYTHON_VERSION=$(echo ${{ matrix.python-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV - name: Free up disk space if: ${{ runner.os == 'Linux' }} # https://github.com/easimon/maximize-build-space/blob/master/action.yml # https://github.com/easimon/maximize-build-space/tree/test-report run: | sudo rm -rf /usr/share/dotnet sudo rm -rf /opt/ghc sudo rm -rf /opt/hostedtoolcache/CodeQL - name: Set up swap space if: runner.os == 'Linux' uses: pierotofy/set-swap-space@v1.0 with: swap-size-gb: 10 - name: Install CUDA ${{ matrix.cuda-version }} if: ${{ matrix.cuda-version != 'cpu' }} uses: Jimver/cuda-toolkit@v0.2.14 id: cuda-toolkit with: cuda: ${{ matrix.cuda-version }} linux-local-args: '["--toolkit"]' # default method is "local", and we're hitting some error with caching for CUDA 11.8 and 12.1 # method: ${{ (matrix.cuda-version == '11.8.0' || matrix.cuda-version == '12.1.0') && 'network' || 'local' }} method: "network" # We need the cuda libraries (e.g. cuSparse, cuSolver) for compiling PyTorch extensions, # not just nvcc # sub-packages: '["nvcc"]' - name: Install PyTorch ${{ matrix.torch-version }}+cu${{ matrix.cuda-version }} run: | pip install --upgrade pip # If we don't install before installing Pytorch, we get error for torch 2.0.1 # ERROR: Could not find a version that satisfies the requirement setuptools>=40.8.0 (from versions: none) pip install lit # We want to figure out the CUDA version to download pytorch # e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116 # see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix # This code is ugly, maybe there's a better way to do this. export TORCH_CUDA_VERSION=$(python -c "from os import environ as env; \ minv = {'1.12': 113, '1.13': 116, '2.0': 117, '2.1': 118, '2.2': 118, '2.3': 118}[env['MATRIX_TORCH_VERSION']]; \ maxv = {'1.12': 116, '1.13': 117, '2.0': 118, '2.1': 121, '2.2': 121, '2.3': 121}[env['MATRIX_TORCH_VERSION']]; \ print(max(min(int(env['MATRIX_CUDA_VERSION']), maxv), minv))" \ ) if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then if [[ ${MATRIX_TORCH_VERSION} == "2.2" ]]; then # --no-deps because we can't install old versions of pytorch-triton pip install typing-extensions jinja2 pip install --no-cache-dir --no-deps --pre https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}/torch-${{ matrix.torch-version }}%2Bcu${TORCH_CUDA_VERSION}-cp${MATRIX_PYTHON_VERSION}-cp${MATRIX_PYTHON_VERSION}-linux_x86_64.whl else pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION} fi else pip install --no-cache-dir torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/cu${TORCH_CUDA_VERSION} fi nvcc --version python --version python -c "import torch; print('PyTorch:', torch.__version__)" python -c "import torch; print('CUDA:', torch.version.cuda)" python -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)" shell: bash - name: Build wheel run: | # Ensure we have the correct version of setuptools to avoid compatibility issues with CUDA pip install setuptools==68.0.0 pip install ninja packaging wheel # Set up the environment for CUDA export PATH=/usr/local/nvidia/bin:/usr/local/nvidia/lib64:$PATH export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH # Clone the repository at the specific commit git clone https://github.com/HazyResearch/flash-attention.git cd flash-attention git checkout 3a9bfd076f98746c73362328958dbc68d145fbec # Build the wheel with limited jobs to prevent OOM issues on the GitHub runner MAX_JOBS=2 FLASH_ATTENTION_FORCE_BUILD="TRUE" FLASH_ATTENTION_FORCE_CXX11_ABI=${{ matrix.cxx11_abi }} python setup.py bdist_wheel --dist-dir=../dist # Build kernels inside the repository cd csrc/rotary MAX_JOBS=2 python setup.py bdist_wheel --dist-dir=../../../dist cd ../layer_norm MAX_JOBS=2 python setup.py bdist_wheel --dist-dir=../../../dist # build the kernels for vllm as well cd ../.. git clone https://github.com/Narsil/vllm.git cd vllm git checkout b5dfc61db88a81069e45b44f7cc99bd9e62a60fa export TORCH_CUDA_ARCH_LIST="8.0 8.6 8.9 9.0" python setup.py bdist_wheel --dist-dir=../dist # Generate a custom name for the wheel to include CUDA and Torch versions cd ../dist tmpname=cu${MATRIX_CUDA_VERSION}torch${MATRIX_TORCH_VERSION}cxx11abi${{ matrix.cxx11_abi }} for wheel in *.whl; do new_wheel_name=$(echo "$wheel" | sed "s/-/+$tmpname-/2") mv "$wheel" "$new_wheel_name" done # Save the wheel name to the GitHub environment echo "wheel_name=$(ls *+$tmpname-*.whl)" >> $GITHUB_ENV - name: Log Built Wheels run: | ls dist - name: Install Hugging Face CLI run: | pip install huggingface_hub - name: Upload to Hugging Face Hub run: | export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_PRECOMPILE_TOKEN }} huggingface-cli upload drbh/flash-attention-pre-compile dist/*