Commit Graph

122 Commits

Author SHA1 Message Date
Mohit Sharma
ed46c2c414
Add gemma3 model (#3099) 2025-03-12 09:25:51 +01:00
drbh
d6a0c67e2f
feat: add initial qwen2.5-vl model and test (#2971)
* feat: support qwen2.5 vl model

* fix: bump support models doc

* feat: check before rope type adjustment and small refactors

* fix: add transformer overlay for processor support

* fix: vendor processor and config from transformers

* fix: refactor/simplify conditionals
2025-02-19 12:38:20 +01:00
Cyril Vallez
a7448661f7
Improve Transformers support (#2970)
* Much better support

* add gpt neox

* bump transformers version

* bump version
2025-02-18 19:04:34 +01:00
drbh
c1cf36c0dc
Improve qwen vl impl (#2943)
* feat: refactor model, improve startup and re enable tests

* fix: improve multimodal rotary embed caching

* fix: limit vision flop calc to qwen2 vl models and update config typing

* fix: include clippy lint

* feat: refactor position ids in warmup and bump tests

* fix: prefer default dtype

* fix: enable all cuda graphs and bump snapshots

* fix: adjust rotaty init path

* fix: simplify get position ids and remove usused vision config

* fix: update position ids so first dim is batch, simplify rotary and bump vlm default token limit

* fix: improve position id init during cuda warmup for mrope and simplfy rotary forward

* fix: check existance before accessing rope type in cuda warmup

* fix: check key before access

* fix: improve mrope check in cuda graph warmup

* fix: remove check for default rope type

* fix: add more test and improve model generation

* fix: improve and simplify get_cos_sin, refactors and cleanup  get_position_ids

* fix: adjust signatures with types
2025-02-04 12:44:18 -05:00
Nicolas Patry
cb747b33da
Add deepseekv3 (#2968)
* Add fp8 support moe models

add deepseekv3

format codfe'

update dockerfile

update doc

* Small modifications.

* Moe kernels 0.8.1

* Upgrade to 0.8.1

* Fixing moe import.

* Black.

* Apply suggestions from code review

Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>

* Fixing Mixtral + Nits.

* Put link to ref.

* Fix other call locations.

* Scoring func `softmax` is the only one that works.

---------

Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
2025-01-30 16:40:25 +01:00
Nicolas Patry
80e7d98f88
Hotfixing intel-cpu (not sure how it was working before). (#2967)
* Hotfixing intel-cpu (not sure how it was working before).

* Do not fail on missing moe-kernels (Intel-cpu).
2025-01-29 22:34:41 +01:00
Cyril Vallez
18c4607d46
Transformers backend TP fix (#2945)
* init dispatch

* cohere fix
2025-01-23 18:09:57 +01:00
Nicolas Patry
29a0893b67
Tmp tp transformers (#2942)
* Upgrade the version number.

* Remove modifications in Lock.

* Tmp branch to test transformers backend with 2.5.1 and TP>1

* Fixing the transformers backend.

inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.

`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.

Torch 2.5.1 is required for sharding support.

* Put back the attention impl.

* Revert the flashinfer (this will fails).

* Building AOT.

* Using 2.5 kernels.

* Remove the archlist, it's defined in the docker anyway.
2025-01-23 18:07:30 +01:00
Cyril Vallez
b980848abf
Flash Transformers modeling backend support (#2913)
* add transformers_flash

* inits

* switch version to make it work

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* Update Makefile-flash-att-v2

* runnable version

* working

* push change

* fix high dim

* init

* default

* latest transformers changes

* revert

* simplify check

* remove flag

* improve type hints + required args

* Update based on transformers PR

* small fix

* Remove Warpers for Processor

* fix compatibility version issue

* raise error if needed

* Simplify with monkey patch

* revert + style + minor improvements

* update comment

* device check

* move the import to avoid device issue

* Update __init__.py

* check for non-native models

* oupsi

---------

Co-authored-by: System administrator <root@ip-10-90-0-159.ec2.internal>
2025-01-21 10:01:51 +01:00
drbh
8f6146f11a
Revert "feat: improve qwen2-vl startup " (#2924)
Revert "feat: improve qwen2-vl startup  (#2802)"

This reverts commit eecca27113.
2025-01-17 12:09:05 -05:00
drbh
eecca27113
feat: improve qwen2-vl startup (#2802)
* feat: tokenize each request individually and increase warmup image size

* feat: adjust rotary embed and avoid cuda graphs of size 2 and smaller

* fix: address image resize and rebase changes

* feat: update to run qwen2-vl tests

* fix: tweak param types
2025-01-17 11:50:41 -05:00
drbh
82f6ea1b71
feat: improve star coder to support multi lora layers (#2883)
* feat: improve star coder to support multi lora layers

* feat: improve weight that support adapters and add tests for starcoder with lora

* fix: bump snapshot for added tests

* fix: rerun pre commit lints

* fix: bump adapter test for added later names
2025-01-16 16:23:55 -05:00
drbh
da5ab46705
Improve vlm support (add idefics3 support) (#2437)
* feat: expand vlm support and add image token logic and tests

* fix: avoid unused perceiver config

* feat: integrate image tokens into inputs embeds

* feat: add simple idefics3 test

* feat: update docs, image token logic and weight names

* fix: improve image processing

* feat: improve prefix for idefics3

* fix: bump idefics3 tests and snapshots

* fix: improve text model loading

* feat: consolidate changes with existing vlms and add support and test for smolvlm

* fix: create new idefic3 file, simplify logic and adjust llama weight loading

* fix: lint with ruff

* fix: clean up idefics 3 and improve prefix handling

* fix: improve typing

* fix: improve prompt_split_image with ref to original impl

* fix: adjust ruff lints and small refactors

* fix: adjust FlashLlamaModel prefix logic
2025-01-09 10:35:32 -05:00
Daniël de Kok
72ab60fdd5
Use FP8 KV cache when specified by compressed-tensors (#2761)
The compressed-tensors configuration can specify the configuration of
the KV cache as well. Use an FP8 KV cache when the configuration tells
us to do so (all other options and types are ignored for now).
2024-11-26 08:27:41 +01:00
Wang, Yi
a5ecd6e586
add ipex moe implementation to support Mixtral and PhiMoe (#2707)
* add ipex moe implementation to support Mixtral and PhiMoe

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update to ipex xpu 2.5

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* torch has xpu support in 2.5

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix oneapi basekit version

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2024-11-18 17:16:55 +01:00
Billel Mokeddem
f9ee46f740
Fix: Change model_type from ssm to mamba (#2740)
Co-authored-by: Ubuntu <ubuntu@ip-172-31-28-135.us-west-2.compute.internal>
2024-11-15 13:15:36 +01:00
Daniël de Kok
a785000842
Add initial support for compressed-tensors checkpoints (#2732)
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because

- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
  quantizers.
- Configurable exclusions for quantization.

This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.

The following types of quantization are supported in this PR:

- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.

Support for other quantization types will be added in subsequent PRs.
2024-11-10 13:54:07 +01:00
drbh
befd9f6735
Support qwen2 vl (#2689)
* feat: add support for qwen2 vl model

* feat: fix token padding, enable warmup and process basic request

* fix: improve get_position_ids, add lift embed_tokens

* fix: remove get_cos_sin_hack dev function

* feat: add simple test chat with meesage and text

* fix: lint test

* fix: adjust positional embeddings for multi dimensional position ids

* fix: update docs and lint unused vars

* fix: include linted file

* fix: add norm after text output

* fix: format model file

* fix: adjust for ruff lints

* fix: remove unused rotate_half

* feat: refactors and calc num features

* fix: prefer position_ids passed from vlm causal lm and reset ids on batch

* fix: adjust get_position_ids if not available and add required args to signatures

* fix: adjust resize case for qwen2_vl warmup

* fix: avoid qwen2 vl specific paths with qwen2
2024-10-30 12:40:51 -04:00
Nicolas Patry
90b226db29
We can have a tokenizer anywhere. (#2527)
* We can have a tokenizer anywhere.

* Handling potential lack of offsets (python tokenizer)

* Remove redundancy.

* Fixing the tests.

* Flake.lock update ?

* Fixing the  GIL locking.

* Fixing mamba by using the transformers version.

* Adding the legacy handle.

* Ellide lifetime.

* Lint.

* Deprecation message.

* Fixing bad rebase.
2024-10-28 05:00:24 +01:00
Daniël de Kok
0f346a3296
Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels (#2688)
* Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels

Performance and accuracy of these kernels are on par (tested with Llama
70B and 405B). Removes a dependency and resolves some stability issues
we have been seeing.

* Update test snapshots
2024-10-25 16:40:47 +02:00
OlivierDehaene
03c9388bf7
feat: natively support Granite models (#2682)
* feat: natively support Granite models

* Update doc
2024-10-23 10:04:05 +00:00
Nicolas Patry
153ff3740b
CI job. Gpt awq 4 (#2665)
* add gptq and awq int4 support in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix ci failure

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* set kv cache dtype

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine the code according to the review command

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Simplifying conditionals + reverting integration tests values.

* Unused import

* Fix redundant import.

* Revert change after rebase.

* Upgrading the tests (TP>1 fix changes to use different kernels.)

* Update server/text_generation_server/layers/gptq/__init__.py

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-18 17:55:53 +02:00
Daniël de Kok
5bbe1ce028
Support e4m3fn KV cache (#2655)
* Support `e4m3fn` KV cache

* Make check more obvious
2024-10-17 10:42:16 +02:00
Mohit Sharma
704a58c807
Fp8 e4m3_fnuz support for rocm (#2588)
* (feat) fp8 fnuz support for rocm

* (review comments) Fix compression_config load, type hints

* (bug) update all has_tensor

* (review_comments) fix typo and added comments

* (nit) improved comment
2024-10-16 09:54:50 +02:00
Daniël de Kok
2358c2bb54
Add basic FP8 KV cache support (#2603)
* Add basic FP8 KV cache support

This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:

* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.

* Fix Cargo.toml
2024-10-04 17:51:48 +02:00
Nicolas Patry
d18ed5cfc5
Mllama flash version (#2585)
* Working loading state.

* Preprocessing.

* Working state ? (Broke idefics1 temporarily).

* Cleaner condition.

* Fix idefics.

* Updating config, removing TODO

* Mllama

* Ugrade transformers 4.45

* Flashing mllama.

* Starting to get there.

* Working state.

* Integrations tests for mllama (cutting to 10 tokens because there seems'
to be instability after (meaning size of the batch matters.

* Updating model link.

* Earlier assert.

* Fix vlm ?

* remove log.

* Force ignore all images but last.

* Default dtype bfloat16.

* Update integration test after switch to bf16.

* Remove dead code.

* Removed dead code.

* Upgrade the flake to latest transformers/tokenizers

* Move to hf tgi-nix

* Upgrade to 0.5.0
2024-10-02 11:22:13 +02:00
drbh
93a7042d7e
feat: support phi3.5 moe (#2479)
* feat: support phi3.5 moe model loading

* fix: prefer llama base model and improve rotary logic

* feat: return reasonable generation and add integration test

* fix: run lint and update docs

* fix: rerun lint for openapi docs

* fix: prefer do_sample false unless temp is set by user, and update chat tests

* fix: small typo adjustments

* fix: consolidate long rope paths

* fix: revert greedy by default and test changes

* Vendor configuration so that we don't have to `trust_remote_code`

* Use SparseMoELayer

* Add support for dense MoE

* Some type annotations

* Add the usual model tests

* Ruff.

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-09-30 11:15:09 +02:00
Daniël de Kok
c29dc89c18
Add support for scalar FP8 weight scales (#2550)
* Add support for scalar FP8 weight scales

* Support LLM compressor FP8 checkpoints on H100

On H100, we use fbgemm-gpu, which requires bfloat16 as the input dtype.
However, we wouldn't pick up fp8 quantization for models quantized with
LLM compressor. This change adds enough parsing to detect if models have
FP8-quantized weights.

* Remove stray debug print
2024-09-24 13:57:40 +02:00
drbh
6cb42f49ae
feat: support lora revisions and qkv_proj weights (#2482)
* feat: support lora revisions and qkv_proj weights

* fix: add qkv_proj weights to weight test
2024-09-02 13:09:06 -04:00
Nicolas Patry
d9fbbaafb0
Tied embeddings in MLP speculator. (#2473)
* Tied embeddings in MLP speculator.

* Fixing the scale_weight when users decide to not use the speculation as
much as defined in the config.

* Adding scaling support + optimize some ops.
2024-08-29 17:44:54 +02:00
Nicolas Patry
e415b690a6
Lots of improvements (Still 2 allocators) (#2449)
* Making prefix/flashinfer the default and testing the full release tests.

* Include flashinfer in the docker.

* Using prebuilt.

* Allowing window_left_size (dummy version).

* Disabling flashinfer/prefix caching on odd head_dim

* Disable prefix caching for lora.

* More specific codes.

* Update lock

* Updating integration tests with new values with FI/FD.

Remove paged as a default too, and using FD everywhere.

* Update cargo lock ?

* Upgrade to 1.80 because of bitstream...

* Everywhere 1.80

* Forgot last default place.

* Apply suggestions from code review

Co-authored-by: drbh <david.richard.holtz@gmail.com>

* Updated flake lock

* Tmp

* Upgrade resolution system for less errors in resolution.

* Remove lambda for cleaner function.

* Handling debugger.

* OVerride the env in server tests.

* Is this enough to make it work ?

* This seems to be working.

* Downgrade some logs.

* Fixing the default for vlm.

* Don't enable prefix caching on VLM just yet.

* Change `add_special_tokens` in order to have the correct tokens for chat
input and not (since it's super important with the prefixing now)

* Fixing prefix caching for flashdecoding.

* Update all models.

* Fixed flashinfer version.

* add_special_tokens is internal only

* Fixing seqlen with the new vlms.

* Fixing the issue with `add_special_tokens` not being passed around.

* Fixing the test.

* Removing encoder_decoder (seq2seq).

* Update the chat test.

* Fixing the batching tokenization in flash causal lm.

* Truncating left for radix purposes.

* Oops this doesn't belong here.

* Put back default pure shell.

* Update server tests

- Default to throughput test in k6
- Use TGI_WIGGLE_ROOM to adjust wiggle room

* Only n_heads / process_group.size() are necessary.

* Revert the integrationt tests change (seem linked to head_size
modification).

* Adding error message when assert is violated.

* Fixing the free algorithm to handle times where the common prefix is
smaller.

* Apply suggestions from code review

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Update server/text_generation_server/layers/attention/common.py

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Fix disabling prefix caching - Fix windowing checks.

* Revert the Cohere tokenizer change (for now using a revision instead).

* Fmt.

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 16:29:01 +02:00
drbh
155f9c98e2
feat: validate template variables before apply and improve sliding wi… (#2403)
* feat: validate template variables before apply and improve sliding window check

* fix: improve missing template var test
2024-08-12 10:58:40 -04:00
Vaibhav Srivastav
b2b9c42724
Update documentation for Supported models (#2386)
* Minor doc fixes

* up.

* Other minor updates.
2024-08-09 15:01:34 +02:00
drbh
82d19d7723
Pr 2374 ci branch (#2378)
* Update __init__.py

Fix issue with NoneType comparison for max_input_tokens and sliding_window

- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.

* Update __init__.py

Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.

* fix: syntax/style tweak

---------

Co-authored-by: Praz <prazanth2006@gmail.com>
2024-08-08 11:14:06 -04:00
drbh
21267f3ca3
add gptj modeling in TGI #2366 (CI RUN) (#2372)
* add gptj modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: update docs for model addition

* fix: adjust syntax typo

* fix: adjust syntax typo again

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-07 21:32:37 -04:00
drbh
215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
drbh
bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
drbh
5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Nicolas Patry
abc32537ea
Fixing mistral nemo. (#2276) 2024-07-23 11:16:03 +02:00
Nicolas Patry
6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene
4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
OlivierDehaene
53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok
e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
Daniël de Kok
18db78f295
Hotfix: various GPT-based model fixes (#2256) 2024-07-19 14:42:19 +02:00
Daniël de Kok
5c7c9f1390
Falcon/DBRX: get correct number of key-value heads (#2205) 2024-07-08 13:22:38 +02:00
Daniël de Kok
05c094fcfa
Consistently take prefix in model constructors (#2191)
* Consistently take `prefix` in model constructors

* Release test check fix

* Misc refactor-related fixes
2024-07-05 16:07:48 +02:00
Nicolas Patry
fb2f74e2b9
Refactor dead code - Removing all flash_xxx.py files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-07-05 10:29:56 +02:00
Nicolas Patry
4327210e6b
[Major Change][Undecided yet] Move to FlashDecoding instead of PagedAttention kernel. (#1940)
* Using flash decoding

Conditional flashdecoding.

Fix max_q.

Working kvcache

Working version with flash decoding.

Make it work for mistral.

Fix after rebase..

Less intrusive.

REvert changes in modeling.

Speedup flashdecoding.

HHachweew
Hack to make other models work.

Fixing non flash decoding llama path.

Router logic knows about page size.

Missing 2 models.

Missing cohere.

Fixing cohere flash decoding.

Revamped all this architecture.

Fix cohere.

Fixing falcon.

Enabling custom block size schedule.

Update router/src/infer.rs

Not sending preallocated output.

* Making it work on non flash decoding.

* Fix Cohere.

* Fix non decoding paths.

* Rebased.

* No need for cache_manager anymore.

* Update?

* "ipex" -> "cpu"

* These do not belong.

* Factoring cu_seqlen_qk for better abstracting over every model.

* Fixing non flash tests/imports.

* Changing return everywhere.

* Update mistral past.

* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).

* Fixup mistral clamping (had issues with cuda graphs).

* No need to recreate anything actually.
2024-07-01 23:28:00 +02:00
Nicolas Patry
3ea8259af1
Fixing gemma2. (#2135)
* Fixing gemma2.

* Adding new model.
2024-06-27 16:04:20 +02:00
drbh
04e1af94d7
Enable multiple LoRa adapters (#2010)
* feat: first draft load multiple lora

* feat: load weights within layer and refactor lora pass

* fix: refactor and reduce lora math

* feat: baseline impl single request multi lora support

* feat: prefer lorax implementation and port loading logic

* fix: prefer adapter_data and refactors

* feat: perfer loraxs custom punica kernels and add mlp loras

* fix: adjust batch for bgmv

* fix: adjust adapter_segments logic when in batch

* fix: refactor and move changes to v3 proto

* fix: pass model_id for all flash causal lms

* fix: pass model_id for all causal and seq2seq lms

* fix: add model_id to model test

* feat: add lora support to mistral and refactors

* feat: prefer model id in request

* fix: include rust code for adapter id

* feat: bump launcher and add new lora docs

* feat: support base model generation and refactors

* fix: rename doc to retry ci build

* feat: support if vlm models

* fix: add adapter_data param and avoid missing layers

* fix: add adapter_data param to phi and neox

* fix: update all models forwards to include adapter_data

* fix: add model_id to IdeficsCausalLM

* Update lora.md

Fixed a typo

* Update lora.md

Fixing spam image

* fix: add lora kernel to dockerfile, support running without kernels and refactors

* fix: avoid dockerfile conflict

* fix: refactors and adjust flash llama lora logic

* fix: skip llama test due to CI issue (temp)

* fix: skip llama test CI (temp) 2

* fix: revert skips and prefer updated ci token for tests

* fix: refactors and helpful comments

* fix: add noop in TensorParallelAdapterRowLinear too

* fix: refactor and move shard_lora_weights logic

* fix: exit early if no adapter_data

---------

Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 14:46:27 -04:00