Commit Graph

79 Commits

Author SHA1 Message Date
Nicolas Patry
568cc9f3d0 Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-09-25 05:31:08 +00:00
OlivierDehaene
a7515b8af1 fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-09-25 05:31:08 +00:00
Daniël de Kok
50149c3800 Add FP8 release test (#2261) 2024-09-25 05:29:35 +00:00
Daniël de Kok
c1638a56f1 Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-09-25 05:27:40 +00:00
Daniël de Kok
2dd680b799 Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-09-25 05:27:40 +00:00
drbh
619eeded47 feat: simple mistral lora integration tests (#2180)
* feat: simple mistral lora integration tests

* fix: include args in docker launcher

* fix: disable cuda graphs with lora and warn

* fix: adjust docs and precommit issues

* fix: re update docs
2024-09-25 05:27:40 +00:00
Daniël de Kok
54c194dfa6 GPTQ CI improvements (#2151)
* Add more representative Llama GPTQ test

The Llama GPTQ test is updated to use a model with the commonly-used
quantizer config format and activation sorting. The old test is
kept around (but renamed) since it tests the format produced by
`text-generation-server quantize`.

* Add support for manually triggering a release build
2024-09-25 05:21:03 +00:00
Nicolas Patry
1b434e8019 Refactor dead code - Removing all flash_xxx.py files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-09-25 05:20:28 +00:00
Daniël de Kok
e0d168ba20 Use GPTQ-Marlin for supported GPTQ configurations (#2111)
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
let's use it by default if the kernels are installed, the GPU supports
it, and the kernels support the configuration.

For models generated by `text-generation-server quantize`, use
`sym=False`. This subcommand symmetric quantization since the beginning
and incorrectly reporting the model to be symmetric will use
GPTQ-Marlin (which does not support asymmetric quantization).
2024-09-24 03:57:32 +00:00
Daniël de Kok
d731866245 Idefics2: sync added image tokens with transformers (#2080)
Before this change, the number of reserved image tokens was not the
same as the number of images. Fixes #2029.

While at it, also remove all the image token handling duplication
in `prepare_input`.
2024-09-24 03:56:28 +00:00
Daniël de Kok
136fb7e9b9 Add pytest release marker (#2114)
* Add pytest release marker

Annotate a test with `@pytest.mark.release` and it only gets run
with `pytest integration-tests --release`.

* Mark many models as `release` to speed up CI
2024-09-24 03:52:50 +00:00
Daniël de Kok
fb939370a3 Support different image sizes in prefill in VLMs (#2065)
When a batch contained images if different sizes during prefill, the
server would fail (see e.g. #2056). Images were processed separately and
then concatenated. However, this can fail for images with different sizes.

Fix this by preprocessing all images in the batch together, so that the
image processor can ensure that all image tensors have compatible sizes.
2024-09-24 03:43:31 +00:00
Daniël de Kok
f1f28404e7 Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-09-24 03:43:30 +00:00
drbh
99c947452d Support chat response format (#2046)
* feat: support response_format in chat

* fix: adjust typos

* fix: add trufflehog lint
2024-09-24 03:42:29 +00:00
Daniël de Kok
77ac0f364b Add support for Marlin-quantized models
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.

Tested with:

- Llama 2
- Llama 3
- Phi 3
2024-09-24 03:38:05 +00:00
Daniël de Kok
f6c5e078d5 Gemma GPTQ checks: skip logprob checks
This test fails somewhat regularly due to non-determinism and this
test is primarily to verify that we are loading a model which doesn't
have `float16` as the default dtype correctly.
2024-09-24 03:19:39 +00:00
Daniël de Kok
628d6a13da Add support for exl2 quantization
Mostly straightforward, changes to existing code:

* Wrap quantizer parameters in a small wrapper to avoid passing
  around untyped tuples and needing to repack them as a dict.
* Move scratch space computation to warmup, because we need the
  maximum input sequence length to avoid allocating huge
  scratch buffers that OOM.
2024-09-24 03:19:39 +00:00
Daniël de Kok
1439b26cd4 Fix GPTQ for models which do not have float16 at the default dtype (simpler) (#1953)
# What does this PR do?

Fix GPTQ for models which do not have float16 at the default dtype

Before this change GPTQ models would not work if the model's default
data type is not `float16`. For example, Gemma GPTQ models would fail
because the default dtype of Gemma is `bfloat16`. There are two issues:

If the default `dtype` is not `float16`, the quantizer's `float16`
parameters get converted to that dtype. The kernels cannot deal
with non-`float16` types. The same applies to inputs of quantized ops.

This is resolved by setting the dtype of gptq/awq-quantized models to
`float16`.

Simpler version of #1951.

**Draft:** just testing...

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-09-24 03:14:53 +00:00
Daniël de Kok
742ef9b8e5 Fix (flash) Gemma prefix and enable tests 2024-09-24 03:14:53 +00:00
Nicolas Patry
479f1953ba Fix seeded output. (#1949)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-09-24 03:14:53 +00:00
drbh
62b2a8b67b Pali gemma modeling (#1895)
This PR adds paligemma modeling code

Blog post: https://huggingface.co/blog/paligemma
Transformers PR: https://github.com/huggingface/transformers/pull/30814

install the latest changes and run with
```bash
# get the weights
# text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf

# run TGI
text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf
```

basic example sending various requests
```python
from huggingface_hub import InferenceClient

client = InferenceClient("http://127.0.0.1:3000")

images = [
    "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png",
]

prompts = [
    "What animal is in this image?",
    "Name three colors in this image.",
    "What are 10 colors in this image?",
    "Where is the cow standing?",
    "answer en Where is the cow standing?",
    "Is there a bird in the image?",
    "Is ther a cow in the image?",
    "Is there a rabbit in the image?",
    "how many birds are in the image?",
    "how many rabbits are in the image?",
]

for img in images:
    print(f"\nImage: {img.split('/')[-1]}")
    for prompt in prompts:
        inputs = f"![]({img}){prompt}\n"
        json_data = {
            "inputs": inputs,
            "parameters": {
                "max_new_tokens": 30,
                "do_sample": False,
            },
        }
        generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False)
        print([f"{prompt}\n{generated_output}"])

```

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-17 05:36:58 +00:00
Daniël de Kok
27a5d6b5f9 Add GPT-2 with flash attention (#1889)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

This change adds `FlashGPT2ForCausalLM` and wires it up. The model
itself is pretty straightforward, the main difference from other models
is that it uses trained position embeddings and that all weight matrices
are transposed compared to other models (due to the use of Conv1D in the
upstream model).

<!-- Remove if not applicable -->

Fixes # (issue)

## Before submitting
- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [x] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [x] Did you write any new necessary tests?

## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

@Narsil

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-07-17 05:36:58 +00:00
Nicolas Patry
57b31f410d Idefics2. (#1756)
<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-06-10 09:29:08 +03:00
OlivierDehaene
a7c744664c v2.0.1 2024-06-03 15:39:47 +03:00
drbh
918916939f feat: accept list as prompt and use first string (#1702)
This PR allows the `CompletionRequest.prompt` to be sent as a string or
array of strings. When an array is sent the first value will be used if
it's a string; otherwise the according error will be thrown

Fixes:
https://github.com/huggingface/text-generation-inference/issues/1690
Similar to: https://github.com/vllm-project/vllm/pull/323/files
2024-06-03 15:39:47 +03:00
drbh
2aad5f89bb feat: improve tools to include name and add tests (#1693)
This PR makes tool calling aware of the name of the function selected. 

Fixes:
https://github.com/huggingface/text-generation-inference/issues/1657

Thank you @puppetm4st3r for the helpful snippets, large parts of this PR
are simply refactors of the code shared 🙏

**opening draft PR because small tweaks are needed before merging
2024-06-03 15:39:47 +03:00
OlivierDehaene
c6a31b9e2b v2.0.0 (#1736) 2024-04-26 07:42:52 +00:00
Nicolas Patry
661081d2d2 Improve the defaults for the launcher (#1727)
- Renamed `max_input_length` into `max_input_tokens` for consistency
(backward compatible change, will yell if both are set.)
- Will now use the config for `max_input_tokens` `max_total_token` and
`max_batch_total_tokens`.
- Capping the values to 16k in order to save VRAM on behalf of users
(overriddable by simply setting the values).

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-04-26 07:22:04 +00:00
Nicolas Patry
2b2f4dee94 Adding Llava-Next (Llava 1.6) with full support. (#1709)
- Changed all models to extract `embed_tokens` in order to enable llava
to separately call the embeddings and the core model layers.
- Added VlmCausalLM to inherit from FlashMistral in order to be
maximally supported. The only added logics sits on top and parses images
into pixel values, preallocates input_ids space for the image
embeddings, and passes them for the model.
- Added Clip for the vision tower.
- Didn't add flash for the vision tower since there's no padding anyway.
- Added heuristic (potentially incomplete) to calculate number of
features *before* calculating the clip patches (allows for easier logic
reuse of the LLM under the hood).

Still needs to be done:

- [x] Implement the image parsing in the controller side, to avoid
downloading n times per TP shard and also refusing requests too large
early and avoid issues where the truncation actually truncates the
image.
- [ ] Make sure it works with quantization properly.
- [x] Make sure it works with TP>1

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-04-25 14:30:55 +00:00
OlivierDehaene
0bf856dc60 v1.4.5 (#1686) 2024-04-25 14:08:27 +03:00
OlivierDehaene
6ac93d8f28 v1.4.4 (#1668) 2024-04-25 12:40:30 +03:00
Nicolas Patry
ecdacbb73c Inline images for multimodal models. (#1666) 2024-04-25 12:35:51 +03:00
Nicolas Patry
07f05a86a4 Repair idefics integration tests. (#1663)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-04-25 12:35:31 +03:00
drbh
ab074c81b7 fix: improve tool type, bump pydantic and outlines (#1650)
This PR resolves a couple

- [X] adjusts the tool response to align with openai's tools response
type
- [X] bumps pydantic to `2.6.4` in all apps (resolves dependency issue
when running tests)
- [X] bump `outlines` version and fix import for new name
2024-04-25 12:34:55 +03:00
drbh
b36c0f8436 fix: prefer spaces url over temp url (#1662)
This PR fixes the broken urls in the idefics tests causing CI to fail
2024-04-25 12:32:49 +03:00
drbh
d4aebbd10a fix: correctly index into mask when applying grammar (#1618)
This PR fixes how the grammar mask is index when generating text and
adds a new test to ensure the grammars work with non flash models
2024-04-25 10:16:16 +03:00
drbh
e259625b8b fix: Handle concurrent grammar requests (#1610)
This PR fixes parallel grammar requests, currently grammar states are
not concatenated correctly when a new request is added to the batch and
this results in incorrect generation. This PR updates the `concatenate`
function to correctly include the previous states.

fixes: #1601
2024-04-25 10:11:40 +03:00
OlivierDehaene
e9b200369c v1.4.3 (#1609) 2024-04-25 09:25:54 +03:00
OlivierDehaene
666cdaaf16 feat: Qwen2 (#1608)
See #1584

---------

Co-authored-by: Cheng Kuan Yong Jason <jasoncky96@gmail.com>
2024-04-25 09:21:22 +03:00
OlivierDehaene
7c6a47bb7a feat: starcoder2 (#1605) 2024-04-25 09:18:55 +03:00
drbh
f215cc15ee Support tools (#1587)
This work in progress PR begins to add support for tools. Tools relies
on grammar support and still has some unsolved challenges. Opening the
PR for visibility and feedback
2024-04-25 09:14:53 +03:00
Nicolas Patry
21d52c9ca1 Revamp medusa implementation so that every model can benefit. (#1588)
<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
2024-04-25 09:13:03 +03:00
OlivierDehaene
a461257066 feat: add support for Gemma (#1583) 2024-04-24 18:08:23 +03:00
OlivierDehaene
3c6e6d8c3f fix(router): fix openapi and add jsonschema validation (#1578) 2024-04-24 18:07:44 +03:00
OlivierDehaene
31b5e37f49 chore: add pre-commit (#1569) 2024-04-24 15:32:02 +03:00
drbh
55acb86f42 Outlines guided generation (#1539)
This WIP PR starts to add grammar support via outlines, currently this
PR supports very simple regex grammars and does not optimize for
precompiling or caching grammar fsm's.

todo:
- [X] add simple outlines guidance to `NextTokenChooser`
- [X] update protos for grammar
- [X] update generation params API
- [X] constrain simple grammar
- [ ] support parsing more complex grammar into fsm
- [ ] support all outline support grammar types
- [ ] explore optimizations to avoid recompiling grammars

guided request
```bash
curl -s 'http://localhost:3000/generate' \
--header 'Content-Type: application/json' \
--data-raw '{
    "inputs": "make an email for david: \n",
    "parameters": {
        "max_new_tokens": 6,
        "grammar": "[\\w-]+@([\\w-]+\\.)+[\\w-]+"
    }
}' | jq
```
response
```json
{
  "generated_text": "david@example.com"
}
```

unguided request
```bash
curl -s 'http://localhost:3000/generate' \
--header 'Content-Type: application/json' \
--data '{
    "inputs": "make an email for david: \n",
    "parameters": {
        "max_new_tokens": 6
    }
}' | jq
```
response
```json
{
  "generated_text": "    email = 'david"
}
```
2024-04-24 14:57:37 +03:00
Nicolas Patry
e93cc34a22 Improving mamba runtime by using updates (#1552)
- Move float16 to bfloat16, which has less imprecisions (load test are
  failing with the update kernels + f16, all working under bf16).

  Another note, is that we are not respecting the layer norm in f32
  defined in the configuration (this is OK in my book, but that could
  impact the f16 precision)

- Moved to update kernels. Triton overhead is super high, removed by
  switching to cuda graphs works great (update cuda graph is available
  in TRT-LLM if needed, seems *exactly* like the regular ssm kernel.

- Moved inference_params struct in order to make only 2 tensors, to
  reduce the overhead of copying back and forth to the cuda graphs.

- Left over overhead seems entirely in the tokenization bit. (Still 4
  copies are paid before launching the graph)


# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-04-24 13:21:39 +03:00
Ilyas Moutawwakil
777e519277 ROCm AWQ support (#1514)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

This PR adds the possibility to run AWQ models with Exllama/GPTQ
kernels, specifically for ROCm devices that support Exllama kernels but
not AWQ's GEMM.

This is done by :
- un-packing, reordering and re-packing AWQ weights when `--quantize
gptq` but the model's `quant_method=awq`.
- avoiding overflows when adding 1 to zeros in exllama and triton.

Ref: https://github.com/casper-hansen/AutoAWQ/pull/313

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-24 09:21:34 +00:00
OlivierDehaene
f1d8da3ba6 feat(server): add frequency penalty (#1541) 2024-04-24 08:43:50 +00:00
drbh
51a4e62ed4 Impl simple mamba model (#1480)
This draft PR is a work in progress implementation of the mamba model.
This PR currently loads weights, and produces correct logits after a
single pass.

This PR still needs to correctly integrate this model so it produces
tokens as expected, and apply optimization to avoid all copies during
runtime/unnecessary operations.

[Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752)
https://github.com/johnma2006/mamba-minimal

https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs
https://github.com/huggingface/transformers/pull/28094

Notes: this dev work is currently targeting `state-spaces/mamba-130m`,
so if you want to test please use that model. Additionally when starting
the router the prefill needs to be limited: `cargo run --
--max-batch-prefill-tokens 768 --max-input-length 768`

Integration tests have been added and basic functionality such as model
loading is supported.

```bash
cd integration-tests
pytest -vv models/test_fused_kernel_mamba.py
```
- [x] add tests
- [x] load model
- [x] make simple request
- [ ] resolve warmup issue
- [ ] resolve output issues

fetching models tested during dev
```bash
text-generation-server download-weights state-spaces/mamba-130m
text-generation-server download-weights state-spaces/mamba-1.4b
text-generation-server download-weights state-spaces/mamba-2.8b
```

The server can be run
```bash
cd server
 MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b
```

router
```bash
cargo run
```

make a request
```bash
curl -s localhost:3000/generate \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
    -H 'Content-Type: application/json' | jq
```

response
```json
{
  "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data."
}
```

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-23 11:45:11 +03:00