* Upgrade the version number.
* Remove modifications in Lock.
* Tmp branch to test transformers backend with 2.5.1 and TP>1
* Fixing the transformers backend.
inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.
`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.
Torch 2.5.1 is required for sharding support.
* Put back the attention impl.
* Revert the flashinfer (this will fails).
* Building AOT.
* Using 2.5 kernels.
* Remove the archlist, it's defined in the docker anyway.
* Attempt at automatic max batch prefill.
* Taking into account number of shards.
* Adding more cards.
* Adding A100 + H100
* Adding a few more cards.
* Logprobs cost too much.
* h100 better name, and keep factor of 2
* Damn inflated sparse tflops.
* Typo in h100.
* Updated the flops calculation (checked with fvcore).
* chunking by default.
* Fix prefix caching for chat completion since we removed logprobs.
* More tests.
* Dropping all the prefill logprobs.
* Add a flag that enables users to get logprobs back.
* Repairing prompt token counting.
* Fixing a few tests.
* Remove some scaffolding.
* Attempting to reduces the issues (workarounds for now).
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because
- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
quantizers.
- Configurable exclusions for quantization.
This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.
The following types of quantization are supported in this PR:
- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.
Support for other quantization types will be added in subsequent PRs.
* Add basic FP8 KV cache support
This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:
* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.
* Fix Cargo.toml
* doc: Add metrics documentation and add a 'Reference' section
* doc: Add API reference
* doc: Refactor API reference
* fix: Message API link
* Bad rebase
* Moving the docs.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>