* update transformres
* Upgrading the nix deps too.
* Forcing torchvision to be in there.
* Fixing bug in mllama.
* Those tests cannot be run in CI.
* Lint.
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* initial changes
* Add support for other vlm
* cleanup comment
* Improve attn_implementation
* Add comments for support of models
* add model
* add model
* fixes and improvements
* update docker
* Add cache position
* Add tests
* remove redundant changes
* remove tr version
* Upgrade doc + fix linting.
* Fixing the CI.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Update to `kernels` 0.2.1
The package was renamed from `hf-kernels` to `kernels`. The new version
also updates the lockfile format.
* Download kernels in `install-cuda` target
* feat: add support for HF_HUB_USER_AGENT_ORIGIN to add user-agent Origin field in Hub requests.
* fix: Rust version for Neuron
* fix: PR comments, use rust-toolchain.toml
* Use Hub kernels for Marlin and cutlass quantization kernels
* Use hub kernels for MoE/GPTQ-Marlin MoE
* Use attention kernels from the Hub
* Cache the kernels in the Docker image
* Update moe kernels
* Support loading local kernels for development
* Support latest moe kernels
* Update to moe 0.1.1
* CI: download locked kernels for server tests
* Fixup some imports
* CI: activate venv
* Fix unused imports
* Nix: add attention/moe/quantization kernels
* Update hf-kernels to 0.1.5
* Update kernels
* Update tgi-nix flake for hf-kernels
* Fix EOF
* Take `load_kernel` out of a frequently-called function
* Hoist another case of kernel loading out of a somewhat hot function
* marlin-kernels -> quantization
* attention -> paged-attention
* EOF fix
* Update hf-kernels, fixup Docker
* ipex fix
* Remove outdated TODO
* Using the "lockfile".
* Revert dummy modifications.
* Lock on python 3.11
* Another attempt.
* ..
* Bad cache hits.
* The good old monkey.
* How in the world...
* We need the launcher still.
* .
* ..
* Attempt #42
* Don't break all other builds.
* Mode max.
* Applying to other builds.
This version removes our patches/custom API. Makes it simpler to
get changes from upstream. One of which is that we can enable FP8
KV cache for paged attention as well.
* Upgrade the version number.
* Remove modifications in Lock.
* Tmp branch to test transformers backend with 2.5.1 and TP>1
* Fixing the transformers backend.
inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.
`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.
Torch 2.5.1 is required for sharding support.
* Put back the attention impl.
* Revert the flashinfer (this will fails).
* Building AOT.
* Using 2.5 kernels.
* Remove the archlist, it's defined in the docker anyway.
* Moving to `uv` instead of `poetry`.
More in the standard, faster, seemingly better lockfile.
* Creating venv if not created.
* Create the venv.
* Fix ?
* Fixing the test by activating the environment ?
* Install system ?
* Add the cli entry point.
* docker install on system
* Monkeying this...
* `--system` is redundant.
* Trying to force-include this pb folder.
* TRying to check that pb is imported correctly.
* Editable install necessary ?
* Non editable?
* Editable it is.
* Upgrading bitsandbytes.
Co-Authored-By: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Tighter lock.
---------
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Sync (most) server dependencies with Nix
Skipped most grpcio packages, because of protobuf version
incompatibility with the opentelemetry packages.
* Add a primitive script to generate Poetry commands to sync with Nix
This is not fully automated, since getting the Nix versions may be
unresolvable. However, it does take most of the work out of doing
this manually.
* Upgrade eetq ?
* Fmt.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Add support for compressed-tensors w8a8 int checkpoints
This change adds a loader for w8a8 int checkpoints. One large benefit of
int8 support is that the corresponding cutlass matmul kernels also work on
compute capability 7.5.
Evaluation on neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8:
| Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr|
|---------------|------:|----------------|-----:|-----------------------|---|-----:|---|------|
|gsm8k_cot_llama| 3|flexible-extract| 8|exact_match |↑ |0.8431|± |0.0100|
| | |strict-match | 8|exact_match |↑ |0.8393|± |0.0101|
|ifeval | 4|none | 0|inst_level_loose_acc |↑ |0.8597|± | N/A|
| | |none | 0|inst_level_strict_acc |↑ |0.8201|± | N/A|
| | |none | 0|prompt_level_loose_acc |↑ |0.7967|± |0.0173|
| | |none | 0|prompt_level_strict_acc|↑ |0.7468|± |0.0187|
Which is the same ballpark as vLLM.
As usual, lots of thanks to Neural Magic/vLLM for the kernels.
* Always use dynamic input quantization for w8a8 int
It's far less flaky and gives better output.
* Use marlin-kernels 0.3.5
* Fix a typo
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* Small fixes
---------
Co-authored-by: drbh <david.richard.holtz@gmail.com>
* Remove vLLM dependency for CUDA
This change adds `attention-kernels` as a dependency for paged
attention and cache reshaping. With that, we don't use vLLM
anywhere for CUDA.
Tested run (since we don't have paged attention in CI):
```
❯ ATTENTION=paged python -m pytest integration-tests -k "llama and awq" --release
[...]
5 snapshots passed.
```
* Fix clippy warning
* Upgrade outlines to 0.1.1
* Update for new API
* Check if allowed tokens is None
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because
- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
quantizers.
- Configurable exclusions for quantization.
This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.
The following types of quantization are supported in this PR:
- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.
Support for other quantization types will be added in subsequent PRs.
* Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels
Performance and accuracy of these kernels are on par (tested with Llama
70B and 405B). Removes a dependency and resolves some stability issues
we have been seeing.
* Update test snapshots
* Add support for FP8 KV cache scales
Since FP8 only has limited dynamic range, we can scale keys/values
before storing them into the cache (and unscale them in attention). To
avoid rescaling the cache as the absmax values change, good scales are
usually determined per layer using calibration calibration data and stored
in the checkpoint.
This change adds support for for using key-value scales and loading them
from checkpoints in the two most common formats:
- Separate per-layer `k_scale` and `v_scale` scalars.
- Per-layer `kv_scale` scalar (older format).
Currently, scales are only used with an `float8_e4m3fn` cache.
Besides adding support for key/value scales, the `fp8_quantize` function
is also extended to support quantization with a kernel vendored from
vLLM. This is slightly faster than the PyTorch implementation, but also
scales in FP32, potentially improving accuracy.
* Update FP8 KV cache test to use checkpoint with scales
* `can_scale`: check that the attention is flashinfer
To make sure that everything is formatted with the same black version
as CI.
I sometimes use isort for new files to get nicely ordered imports,
so add it as well. Also set the isort configuration to format in a
way that is compatible with black.
* Working loading state.
* Preprocessing.
* Working state ? (Broke idefics1 temporarily).
* Cleaner condition.
* Fix idefics.
* Updating config, removing TODO
* Mllama
* Ugrade transformers 4.45
* Flashing mllama.
* Starting to get there.
* Working state.
* Integrations tests for mllama (cutting to 10 tokens because there seems'
to be instability after (meaning size of the batch matters.
* Updating model link.
* Earlier assert.
* Fix vlm ?
* remove log.
* Force ignore all images but last.
* Default dtype bfloat16.
* Update integration test after switch to bf16.
* Remove dead code.
* Removed dead code.
* Upgrade the flake to latest transformers/tokenizers
* Move to hf tgi-nix
* Upgrade to 0.5.0
This change add support for MoE models that use GPTQ quantization.
Currently only models with the following properties are supported:
- No `desc_act` with tensor parallelism, unless `group_size=-1`.
- No asymmetric quantization.
- No AWQ.
* Move to moe-kernels package and switch to common MoE layer
This change introduces the new `moe-kernels` package:
- Add `moe-kernels` as a dependency.
- Introduce a `SparseMoELayer` module that can be used by MoE
models.
- Port over Mixtral and Deepseek.
* Make `cargo check` pass
* Update runner
* Fixing exl2 and other quanize tests again.
* Mark exl2 as non release (so CI tests them, needs to be removed latet).
* Fixing exl2 (by disabling cuda graphs)
* Fix quantization defaults without cuda graphs on exl2 (linked to new
issues with it).
* Removing serde override.
* Go back to released exl2 and remove log.
* Adding warnings for deprecated bitsandbytes + upgrade info to warn.
# What does this PR do?
Making `make install` a much better sane default to start local dev
environments.
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This PR adds paligemma modeling code
Blog post: https://huggingface.co/blog/paligemma
Transformers PR: https://github.com/huggingface/transformers/pull/30814
install the latest changes and run with
```bash
# get the weights
# text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf
# run TGI
text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf
```
basic example sending various requests
```python
from huggingface_hub import InferenceClient
client = InferenceClient("http://127.0.0.1:3000")
images = [
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png",
]
prompts = [
"What animal is in this image?",
"Name three colors in this image.",
"What are 10 colors in this image?",
"Where is the cow standing?",
"answer en Where is the cow standing?",
"Is there a bird in the image?",
"Is ther a cow in the image?",
"Is there a rabbit in the image?",
"how many birds are in the image?",
"how many rabbits are in the image?",
]
for img in images:
print(f"\nImage: {img.split('/')[-1]}")
for prompt in prompts:
inputs = f"{prompt}\n"
json_data = {
"inputs": inputs,
"parameters": {
"max_new_tokens": 30,
"do_sample": False,
},
}
generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False)
print([f"{prompt}\n{generated_output}"])
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->