Commit Graph

7 Commits

Author SHA1 Message Date
Daniël de Kok
571ac9b507
Use kernels from the kernel hub (#2988)
* Use Hub kernels for Marlin and cutlass quantization kernels

* Use hub kernels for MoE/GPTQ-Marlin MoE

* Use attention kernels from the Hub

* Cache the kernels in the Docker image

* Update moe kernels

* Support loading local kernels for development

* Support latest moe kernels

* Update to moe 0.1.1

* CI: download locked kernels for server tests

* Fixup some imports

* CI: activate venv

* Fix unused imports

* Nix: add attention/moe/quantization kernels

* Update hf-kernels to 0.1.5

* Update kernels

* Update tgi-nix flake for hf-kernels

* Fix EOF

* Take `load_kernel` out of a frequently-called function

* Hoist another case of kernel loading out of a somewhat hot function

* marlin-kernels -> quantization

* attention -> paged-attention

* EOF fix

* Update hf-kernels, fixup Docker

* ipex fix

* Remove outdated TODO
2025-02-10 19:19:25 +01:00
Mohit Sharma
4ef2e045c9
Add fp8 support moe models (#2928)
* Add fp8 support moe models

* flatten condition
2025-01-29 13:56:32 +01:00
Daniël de Kok
5f78ec32a5
Do not convert weight scale to e4m3fnuz on CUDA (#2917) 2025-01-16 13:44:32 +01:00
Mohit Sharma
e07acc7f68
Enable FP8 Per-Tensor Scales and Integrate Marlin/MoE Kernels Repo for ROCm (#2825)
* (feat) convert tscales to tensorwise

* (fix) fp8 scaling for cuda

* (kernel) add marlin-kernels

* add moe-kernels

* fix moe kernel comit

* fix scaling

* nm changes
2025-01-15 11:38:58 +05:30
Daniël de Kok
46a5a7e73e
Add support for wNa16 int 2:4 compressed-tensors checkpoints (#2758)
This change adds support for wNa16 int checkpoints with 2:4 sparsity
using Marlin 2:4 kernels.
2024-11-20 18:25:23 +01:00
Daniël de Kok
3c9df21ff8
Add support for compressed-tensors w8a8 int checkpoints (#2745)
* Add support for compressed-tensors w8a8 int checkpoints

This change adds a loader for w8a8 int checkpoints. One large benefit of
int8 support is that the corresponding cutlass matmul kernels also work on
compute capability 7.5.

Evaluation on neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8:

|     Tasks     |Version|     Filter     |n-shot|        Metric         |   |Value |   |Stderr|
|---------------|------:|----------------|-----:|-----------------------|---|-----:|---|------|
|gsm8k_cot_llama|      3|flexible-extract|     8|exact_match            |↑  |0.8431|±  |0.0100|
|               |       |strict-match    |     8|exact_match            |↑  |0.8393|±  |0.0101|
|ifeval         |      4|none            |     0|inst_level_loose_acc   |↑  |0.8597|±  |   N/A|
|               |       |none            |     0|inst_level_strict_acc  |↑  |0.8201|±  |   N/A|
|               |       |none            |     0|prompt_level_loose_acc |↑  |0.7967|±  |0.0173|
|               |       |none            |     0|prompt_level_strict_acc|↑  |0.7468|±  |0.0187|

Which is the same ballpark as vLLM.

As usual, lots of thanks to Neural Magic/vLLM for the kernels.

* Always use dynamic input quantization for w8a8 int

It's far less flaky and gives better output.

* Use marlin-kernels 0.3.5

* Fix a typo

Co-authored-by: drbh <david.richard.holtz@gmail.com>

* Small fixes

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
2024-11-18 17:20:31 +01:00
Daniël de Kok
a785000842
Add initial support for compressed-tensors checkpoints (#2732)
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because

- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
  quantizers.
- Configurable exclusions for quantization.

This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.

The following types of quantization are supported in this PR:

- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.

Support for other quantization types will be added in subsequent PRs.
2024-11-10 13:54:07 +01:00