* Use Hub kernels for Marlin and cutlass quantization kernels
* Use hub kernels for MoE/GPTQ-Marlin MoE
* Use attention kernels from the Hub
* Cache the kernels in the Docker image
* Update moe kernels
* Support loading local kernels for development
* Support latest moe kernels
* Update to moe 0.1.1
* CI: download locked kernels for server tests
* Fixup some imports
* CI: activate venv
* Fix unused imports
* Nix: add attention/moe/quantization kernels
* Update hf-kernels to 0.1.5
* Update kernels
* Update tgi-nix flake for hf-kernels
* Fix EOF
* Take `load_kernel` out of a frequently-called function
* Hoist another case of kernel loading out of a somewhat hot function
* marlin-kernels -> quantization
* attention -> paged-attention
* EOF fix
* Update hf-kernels, fixup Docker
* ipex fix
* Remove outdated TODO
This version removes our patches/custom API. Makes it simpler to
get changes from upstream. One of which is that we can enable FP8
KV cache for paged attention as well.
* flash decoding
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable xpu flashdecoding
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* set flashdecoding blocksize as 64
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* enable flashdecoding, prefill chunking and prefix caching
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add flashdecoding-ipex
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Remove vLLM dependency for CUDA
This change adds `attention-kernels` as a dependency for paged
attention and cache reshaping. With that, we don't use vLLM
anywhere for CUDA.
Tested run (since we don't have paged attention in CI):
```
❯ ATTENTION=paged python -m pytest integration-tests -k "llama and awq" --release
[...]
5 snapshots passed.
```
* Fix clippy warning
* Add support for FP8 KV cache scales
Since FP8 only has limited dynamic range, we can scale keys/values
before storing them into the cache (and unscale them in attention). To
avoid rescaling the cache as the absmax values change, good scales are
usually determined per layer using calibration calibration data and stored
in the checkpoint.
This change adds support for for using key-value scales and loading them
from checkpoints in the two most common formats:
- Separate per-layer `k_scale` and `v_scale` scalars.
- Per-layer `kv_scale` scalar (older format).
Currently, scales are only used with an `float8_e4m3fn` cache.
Besides adding support for key/value scales, the `fp8_quantize` function
is also extended to support quantization with a kernel vendored from
vLLM. This is slightly faster than the PyTorch implementation, but also
scales in FP32, potentially improving accuracy.
* Update FP8 KV cache test to use checkpoint with scales
* `can_scale`: check that the attention is flashinfer
* Simplify the `attention` function
- Use one definition rather than multiple.
- Add `key`/`value` arguments, so that we don't need the
`PREFILL_IN_KVCACHE` constant.
- Make it kwargs-only (to avoid mixing up the various `Tensor` args).
* Fixup flashinfer support
* Add basic FP8 KV cache support
This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:
* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.
* Fix Cargo.toml