mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
causal_lm server tests rebased (#139)
Co-authored-by: Sylwester Fraczek <sfraczek@habana.ai> Co-authored-by: Jacek Czaja <jczaja@habana.ai>
This commit is contained in:
parent
bad7fe720a
commit
fe16a465a0
@ -17,4 +17,4 @@ def default_pb_parameters():
|
|||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def default_pb_stop_parameters():
|
def default_pb_stop_parameters():
|
||||||
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)
|
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)
|
@ -7,25 +7,27 @@ from copy import copy
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from text_generation_server.pb import generate_pb2
|
from text_generation_server.pb import generate_pb2
|
||||||
|
from text_generation_server.models import get_model
|
||||||
from text_generation_server.models.causal_lm import (
|
from text_generation_server.models.causal_lm import (
|
||||||
CausalLM,
|
|
||||||
CausalLMBatch,
|
CausalLMBatch,
|
||||||
PREFILL_BATCH_BUCKET_SIZE,
|
PREFILL_BATCH_BUCKET_SIZE,
|
||||||
PAD_SEQUENCE_TO_MULTIPLE_OF
|
PAD_SEQUENCE_TO_MULTIPLE_OF,
|
||||||
|
MAX_TOTAL_TOKENS,
|
||||||
|
BATCH_BUCKET_SIZE,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
PAD_TOKEN=0
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def default_causal_lm():
|
def default_causal_lm():
|
||||||
return CausalLM("gpt2")
|
return get_model("meta-llama/Llama-2-7b-hf", None, None, None, None)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def gpt2_tokenizer():
|
def default_tokenizer(default_causal_lm):
|
||||||
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left")
|
default_causal_lm.tokenizer.pad_token_id = PAD_TOKEN
|
||||||
tokenizer.pad_token_id = 50256
|
return default_causal_lm.tokenizer
|
||||||
return tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
@ -46,14 +48,14 @@ def default_pb_batch(default_pb_request):
|
|||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def default_causal_lm_batch(default_pb_batch, gpt2_tokenizer):
|
def default_causal_lm_batch(default_pb_batch, default_tokenizer):
|
||||||
return CausalLMBatch.from_pb(
|
return CausalLMBatch.from_pb(
|
||||||
default_pb_batch, gpt2_tokenizer, torch.float32, torch.device("hpu")
|
default_pb_batch, default_tokenizer, torch.float32, torch.device("hpu")
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer):
|
def default_multi_requests_causal_lm_batch(default_pb_request, default_tokenizer):
|
||||||
req_0 = copy(default_pb_request)
|
req_0 = copy(default_pb_request)
|
||||||
req_0.id = 1
|
req_0.id = 1
|
||||||
req_1 = default_pb_request
|
req_1 = default_pb_request
|
||||||
@ -62,7 +64,7 @@ def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer):
|
|||||||
|
|
||||||
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
|
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
|
||||||
return CausalLMBatch.from_pb(
|
return CausalLMBatch.from_pb(
|
||||||
batch_pb, gpt2_tokenizer, torch.float32, torch.device("hpu")
|
batch_pb, default_tokenizer, torch.float32, torch.device("hpu")
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -78,17 +80,20 @@ def test_batch_from_pb(default_pb_batch, default_causal_lm_batch):
|
|||||||
# For Gaudi we are adding padding of multiplication of bucket size
|
# For Gaudi we are adding padding of multiplication of bucket size
|
||||||
size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE
|
size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE
|
||||||
|
|
||||||
assert len(batch.input_ids) == size_of_padded_to_bucket
|
assert len(batch.input_ids) == size_of_padded_to_bucket
|
||||||
|
|
||||||
assert batch.input_ids[0][-2] == 14402
|
assert batch.input_ids[0][-2] == 4321
|
||||||
assert torch.all(batch.input_ids[0][:-2] == 50256)
|
assert batch.input_ids[0][-3] == 1
|
||||||
assert batch.input_ids[0][-1] == 50256
|
assert torch.all(batch.input_ids[0][:-3] == PAD_TOKEN)
|
||||||
|
assert batch.input_ids[0][-1] == PAD_TOKEN
|
||||||
|
|
||||||
|
assert batch.attention_mask[0][-1] == 0
|
||||||
assert batch.attention_mask[0, -2] == 1
|
assert batch.attention_mask[0, -2] == 1
|
||||||
assert torch.all(batch.attention_mask[0, :-2] == 0)
|
assert batch.attention_mask[0, -3] == 1
|
||||||
|
assert torch.all(batch.attention_mask[0, :-3] == 0)
|
||||||
|
|
||||||
assert batch.past_key_values is None
|
assert batch.past_key_values is None
|
||||||
assert all(
|
assert all(
|
||||||
[
|
[
|
||||||
torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0])
|
torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0])
|
||||||
for input_ids, request in zip(batch.input_ids, batch.requests)
|
for input_ids, request in zip(batch.input_ids, batch.requests)
|
||||||
@ -110,73 +115,66 @@ def test_causal_lm_batch_type(default_causal_lm):
|
|||||||
|
|
||||||
|
|
||||||
def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
|
def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
|
||||||
sequence_length = len(default_causal_lm_batch.all_input_ids[0])
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(
|
|
||||||
default_causal_lm_batch
|
|
||||||
)
|
|
||||||
|
|
||||||
assert len(generations) == len(next_batch)
|
sequence_length = len(default_causal_lm_batch.requests[0].all_input_ids)
|
||||||
|
generations, next_batch, _ = default_causal_lm.generate_token([default_causal_lm_batch])
|
||||||
|
padding = next_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
|
|
||||||
assert isinstance(next_batch, CausalLMBatch)
|
assert isinstance(next_batch, CausalLMBatch)
|
||||||
|
assert len(next_batch.attention_mask[0]) == PAD_SEQUENCE_TO_MULTIPLE_OF
|
||||||
|
assert next_batch.requests[0].all_input_ids[-padding-2] == 4321
|
||||||
|
|
||||||
assert len(next_batch.all_input_ids) == len(next_batch)
|
assert torch.all(next_batch.requests[0].all_input_ids[-padding-1:] == PAD_TOKEN)
|
||||||
assert len(next_batch.all_input_ids[0]) == sequence_length + 1
|
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
|
||||||
assert len(next_batch.attention_mask[0]) == 11
|
|
||||||
assert next_batch.all_input_ids[0][-1] == 13
|
|
||||||
assert next_batch.all_input_ids[0][-2] == 14402
|
|
||||||
assert torch.all(next_batch.all_input_ids[0][:-2] == 50256)
|
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask[0][0:2] == 1)
|
generations, next_batch, _ = default_causal_lm.generate_token([default_causal_lm_batch])
|
||||||
assert torch.all(next_batch.attention_mask[0][2:] == 0)
|
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF-3:PAD_SEQUENCE_TO_MULTIPLE_OF] == 1)
|
||||||
|
assert torch.all(next_batch.attention_mask[0][:PAD_SEQUENCE_TO_MULTIPLE_OF-3] == 0)
|
||||||
|
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF+1:] == 0)
|
||||||
|
|
||||||
assert next_batch.input_ids.shape == (len(next_batch), 1)
|
assert next_batch.requests[0].all_input_ids[-padding-2] == 4321
|
||||||
assert next_batch.input_ids[0, 0] == 13
|
assert next_batch.requests[0].all_input_ids[-padding-1] == 292
|
||||||
|
assert torch.all(next_batch.requests[0].all_input_ids[-padding:] == PAD_TOKEN)
|
||||||
|
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
|
||||||
|
|
||||||
assert next_batch.input_lengths == [2]
|
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF
|
||||||
assert next_batch.max_input_length == next_batch.input_lengths[0]
|
assert next_batch.max_input_length == next_batch.input_length
|
||||||
|
|
||||||
assert next_batch.past_key_values is not None
|
assert next_batch.past_key_values is not None
|
||||||
assert all(
|
assert all(
|
||||||
[p[0].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values]
|
[p[0].shape == (BATCH_BUCKET_SIZE, 32, MAX_TOTAL_TOKENS, 128) for p in next_batch.past_key_values]
|
||||||
)
|
)
|
||||||
assert all(
|
assert all(
|
||||||
[p[1].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values]
|
[p[1].shape == (BATCH_BUCKET_SIZE, 32, MAX_TOTAL_TOKENS, 128) for p in next_batch.past_key_values]
|
||||||
)
|
)
|
||||||
assert all([generation.generated_text is None for generation in generations])
|
assert all([generation.generated_text is None for generation in generations])
|
||||||
assert all([len(generation.prefill_tokens) == 1 for generation in generations])
|
assert all([len(generation.prefill_tokens) == PAD_SEQUENCE_TO_MULTIPLE_OF-1 for generation in generations])
|
||||||
assert all(
|
assert all([generation.tokens.token_ids[0] == 292 for generation in generations])
|
||||||
[
|
assert all([generation.tokens.texts[0] == "ing" for generation in generations])
|
||||||
token_id.item() == 13
|
|
||||||
for generation in generations
|
|
||||||
for token_id in generation.tokens.token_ids
|
|
||||||
]
|
|
||||||
)
|
|
||||||
assert all(
|
|
||||||
[
|
|
||||||
token_text == "."
|
|
||||||
for generation in generations
|
|
||||||
for token_text in generation.tokens.texts
|
|
||||||
]
|
|
||||||
)
|
|
||||||
assert generations[0].request_id == 0
|
assert generations[0].request_id == 0
|
||||||
|
|
||||||
|
|
||||||
def test_causal_lm_generate_token_completion(
|
def test_causal_lm_generate_token_completion(
|
||||||
default_causal_lm, default_causal_lm_batch
|
default_causal_lm, default_causal_lm_batch
|
||||||
):
|
):
|
||||||
|
|
||||||
next_batch = default_causal_lm_batch
|
next_batch = default_causal_lm_batch
|
||||||
for _ in range(default_causal_lm_batch.stopping_criterias[0].max_new_tokens - 1):
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
|
||||||
|
for _ in range(default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens - 1):
|
||||||
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
|
|
||||||
assert next_batch is None
|
assert next_batch is None
|
||||||
|
|
||||||
assert len(generations) == 1
|
assert len(generations) == 1
|
||||||
assert generations[0].generated_text.text == ".java:784) at net.minecraft."
|
assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
|
||||||
assert generations[0].request_id == default_causal_lm_batch.requests[0].id
|
assert generations[0].request_id == default_causal_lm_batch.requests[0].data.id
|
||||||
assert (
|
assert (
|
||||||
generations[0].generated_text.generated_tokens
|
generations[0].generated_text.generated_tokens
|
||||||
== default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
== default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -184,51 +182,49 @@ def test_causal_lm_generate_token_completion_multi(
|
|||||||
default_causal_lm, default_multi_requests_causal_lm_batch
|
default_causal_lm, default_multi_requests_causal_lm_batch
|
||||||
):
|
):
|
||||||
next_batch = default_multi_requests_causal_lm_batch
|
next_batch = default_multi_requests_causal_lm_batch
|
||||||
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
|
|
||||||
for i in range(
|
for i in range(
|
||||||
default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 1
|
default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 1
|
||||||
):
|
):
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert next_batch is not None
|
assert next_batch is not None
|
||||||
|
|
||||||
assert len(generations) == 2
|
assert len(generations) == 2
|
||||||
assert generations[1].generated_text.text == ".java:784)"
|
assert generations[1].generated_text.text == "ing the effect of a"
|
||||||
assert (
|
assert (
|
||||||
generations[1].request_id
|
generations[1].request_id
|
||||||
== default_multi_requests_causal_lm_batch.requests[1].id
|
== default_multi_requests_causal_lm_batch.requests[1].data.id
|
||||||
)
|
)
|
||||||
assert (
|
assert (
|
||||||
generations[1].generated_text.generated_tokens
|
generations[1].generated_text.generated_tokens
|
||||||
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
== default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
|
||||||
)
|
|
||||||
# Copy stopping_criterias before filtering
|
|
||||||
stopping_criterias = (
|
|
||||||
default_multi_requests_causal_lm_batch.stopping_criterias.copy()
|
|
||||||
)
|
)
|
||||||
|
|
||||||
next_batch = next_batch.filter([next_batch.requests[0].id])
|
next_batch = next_batch.filter([next_batch.requests[0].data.id])
|
||||||
|
|
||||||
for _ in range(
|
for _ in range(
|
||||||
stopping_criterias[0].max_new_tokens - stopping_criterias[1].max_new_tokens - 1
|
default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens - default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 1
|
||||||
):
|
):
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
|
|
||||||
assert next_batch is None
|
assert next_batch is None
|
||||||
|
|
||||||
assert len(generations) == 1
|
assert len(generations) == 1
|
||||||
assert generations[0].generated_text.text == ".java:784) at net.minecraft."
|
assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
|
||||||
assert (
|
assert (
|
||||||
generations[0].request_id
|
generations[0].request_id
|
||||||
== default_multi_requests_causal_lm_batch.requests[0].id
|
== default_multi_requests_causal_lm_batch.requests[0].data.id
|
||||||
)
|
)
|
||||||
assert (
|
assert (
|
||||||
generations[0].generated_text.generated_tokens
|
generations[0].generated_text.generated_tokens
|
||||||
== default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
== default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -236,11 +232,13 @@ def test_batch_concatenate(
|
|||||||
default_causal_lm, default_causal_lm_batch, default_multi_requests_causal_lm_batch
|
default_causal_lm, default_causal_lm_batch, default_multi_requests_causal_lm_batch
|
||||||
):
|
):
|
||||||
next_batch_0 = default_causal_lm_batch
|
next_batch_0 = default_causal_lm_batch
|
||||||
_, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0)
|
_, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
|
||||||
_, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0)
|
_, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
|
||||||
|
_, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
|
||||||
|
|
||||||
next_batch_1 = default_multi_requests_causal_lm_batch
|
next_batch_1 = default_multi_requests_causal_lm_batch
|
||||||
_, next_batch_1, _ = default_causal_lm.generate_token(next_batch_1)
|
_, next_batch_1, _ = default_causal_lm.generate_token([next_batch_1])
|
||||||
|
_, next_batch_1, _ = default_causal_lm.generate_token([next_batch_1])
|
||||||
|
|
||||||
# Clone past_key_values before concatenating to compare after,
|
# Clone past_key_values before concatenating to compare after,
|
||||||
# because they are removed from the concatenated batches
|
# because they are removed from the concatenated batches
|
||||||
@ -253,113 +251,135 @@ def test_batch_concatenate(
|
|||||||
|
|
||||||
next_batch = CausalLMBatch.concatenate([next_batch_0, next_batch_1])
|
next_batch = CausalLMBatch.concatenate([next_batch_0, next_batch_1])
|
||||||
|
|
||||||
assert torch.equal(next_batch.all_input_ids[0], next_batch_0.all_input_ids[0])
|
assert torch.equal(next_batch.requests[0].all_input_ids, next_batch_0.requests[0].all_input_ids)
|
||||||
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0])
|
assert torch.equal(next_batch.requests[1].all_input_ids, next_batch_1.requests[0].all_input_ids)
|
||||||
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1])
|
assert torch.equal(next_batch.requests[2].all_input_ids, next_batch_1.requests[1].all_input_ids)
|
||||||
|
|
||||||
|
|
||||||
assert torch.all(
|
assert torch.all(
|
||||||
next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1
|
next_batch.attention_mask[0:2, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
|
||||||
)
|
)
|
||||||
assert torch.all(
|
assert torch.all(
|
||||||
next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1
|
next_batch.attention_mask[2, -next_batch.right_padding - 4: -next_batch.right_padding] == 1
|
||||||
)
|
)
|
||||||
assert torch.all(next_batch.attention_mask[1:, 3:] == 0)
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[3, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
|
||||||
|
)
|
||||||
|
|
||||||
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[0:2, :-next_batch.right_padding-3] == 0)
|
||||||
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[2, :-next_batch.right_padding-4] == 0)
|
||||||
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[3, :-next_batch.right_padding-3] == 0)
|
||||||
|
|
||||||
assert next_batch.batch_id == 0
|
assert next_batch.batch_id == 0
|
||||||
assert next_batch.input_ids[0, 0] == 12355
|
assert next_batch.input_ids[0,-next_batch.right_padding - 3] == 1
|
||||||
assert torch.all(next_batch.input_ids[1:] == 13)
|
assert next_batch.input_ids[0,-next_batch.right_padding - 2] == 4321
|
||||||
|
assert next_batch.input_ids[0,-next_batch.right_padding - 1] == 292
|
||||||
|
|
||||||
assert next_batch.input_lengths == [3, 2, 2]
|
assert next_batch.max_input_length == 129
|
||||||
assert next_batch.max_input_length == 3
|
|
||||||
|
assert torch.all(next_batch.input_ids[0,-next_batch.right_padding:] == PAD_TOKEN)
|
||||||
|
assert torch.all(next_batch.input_ids[1,-next_batch.right_padding:] == PAD_TOKEN)
|
||||||
|
assert torch.all(next_batch.input_ids[2,-next_batch.right_padding:] == PAD_TOKEN)
|
||||||
|
assert torch.all(next_batch.input_ids[3,-next_batch.right_padding:] == PAD_TOKEN)
|
||||||
|
|
||||||
|
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
|
||||||
|
assert next_batch.max_input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
|
||||||
|
|
||||||
assert next_batch.requests[0] == next_batch_0.requests[0]
|
assert next_batch.requests[0] == next_batch_0.requests[0]
|
||||||
assert next_batch.requests[1:] == next_batch_1.requests
|
assert next_batch.requests[1:] == next_batch_1.requests
|
||||||
|
|
||||||
assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0]
|
assert next_batch.requests[0].stopping_criteria == next_batch_0.requests[0].stopping_criteria
|
||||||
assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers
|
assert next_batch.requests[1].stopping_criteria == next_batch_1.requests[0].stopping_criteria
|
||||||
|
assert next_batch.requests[2].stopping_criteria == next_batch_1.requests[1].stopping_criteria
|
||||||
assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0]
|
|
||||||
assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias
|
assert next_batch.past_key_values is not None
|
||||||
|
|
||||||
|
assert all([p[0].shape == (8, 32, 2048, 128) for p in next_batch.past_key_values])
|
||||||
|
assert all([p[1].shape == (8, 32, 2048, 128) for p in next_batch.past_key_values])
|
||||||
|
|
||||||
assert next_batch.past_key_values is not None
|
assert next_batch.past_key_values is not None
|
||||||
assert all([p[0].shape == (3, 12, 2, 64) for p in next_batch.past_key_values])
|
|
||||||
assert all([p[1].shape == (3, 12, 2, 64) for p in next_batch.past_key_values])
|
|
||||||
|
|
||||||
for i, past in enumerate(next_batch.past_key_values):
|
for i, past in enumerate(next_batch.past_key_values):
|
||||||
assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:], past[0][0])
|
assert torch.equal(next_batch_0_past_key_values[i][0][0, 0,0:128], past[0][0][0][1:129])
|
||||||
assert torch.equal(
|
assert torch.equal(
|
||||||
next_batch_1_past_key_values[i][0][:, :, -1:], past[0][1:, :, -1:, :]
|
next_batch_1_past_key_values[i][0][:, :, 0:1][0], past[0][1:, :, 1 :2, :][0]
|
||||||
)
|
)
|
||||||
|
|
||||||
assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:], past[1][0])
|
assert torch.equal(next_batch_0_past_key_values[i][1][0, 0,0:128], past[1][0][0][1:129])
|
||||||
assert torch.equal(
|
assert torch.equal(
|
||||||
next_batch_1_past_key_values[i][1][:, :, -1:], past[1][1:, :, -1:, :]
|
next_batch_1_past_key_values[i][1][:, :, 0:1][0], past[1][1:, :, 1 :2, :][0]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
|
|
||||||
for _ in range(
|
for _ in range(
|
||||||
default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 2
|
default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 2
|
||||||
):
|
):
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert next_batch is not None
|
assert next_batch is not None
|
||||||
|
|
||||||
assert len(generations) == 3
|
assert len(generations) == 3
|
||||||
assert generations[2].generated_text.text == ".java:784)"
|
assert generations[2].generated_text.text == "ing the effect of a"
|
||||||
|
|
||||||
assert (
|
assert (
|
||||||
generations[2].request_id
|
generations[2].request_id
|
||||||
== default_multi_requests_causal_lm_batch.requests[1].id
|
== default_multi_requests_causal_lm_batch.requests[1].data.id
|
||||||
)
|
)
|
||||||
assert (
|
assert (
|
||||||
generations[2].generated_text.generated_tokens
|
generations[2].generated_text.generated_tokens
|
||||||
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
== default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
|
||||||
)
|
)
|
||||||
|
|
||||||
next_batch = next_batch.filter(
|
next_batch = next_batch.filter(
|
||||||
[next_batch.requests[0].id, next_batch.requests[1].id]
|
[next_batch.requests[0].data.id, next_batch.requests[1].data.id]
|
||||||
)
|
)
|
||||||
|
|
||||||
for _ in range(
|
for _ in range(
|
||||||
default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
- default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
|
||||||
- 2
|
- 2
|
||||||
):
|
):
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert next_batch is not None
|
assert next_batch is not None
|
||||||
|
|
||||||
assert len(generations) == 2
|
assert len(generations) == 2
|
||||||
assert generations[0].generated_text.text == ".java:784) at net.minecraft."
|
assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
|
||||||
assert generations[0].request_id == default_causal_lm_batch.requests[0].id
|
assert generations[0].request_id == default_causal_lm_batch.requests[0].data.id
|
||||||
assert (
|
assert (
|
||||||
generations[0].generated_text.generated_tokens
|
generations[0].generated_text.generated_tokens
|
||||||
== default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
== default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
)
|
)
|
||||||
|
|
||||||
next_batch = next_batch.filter([next_batch.requests[1].id])
|
next_batch = next_batch.filter([next_batch.requests[1].data.id])
|
||||||
|
|
||||||
for _ in range(
|
for _ in range(
|
||||||
default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
- default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
- default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
- default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
|
||||||
- 4
|
- 4
|
||||||
):
|
):
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
|
|
||||||
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
|
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
|
||||||
assert next_batch is None
|
assert next_batch is None
|
||||||
|
|
||||||
assert len(generations) == 1
|
assert len(generations) == 1
|
||||||
assert generations[0].generated_text.text == ".java:784) at net.minecraft."
|
assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
|
||||||
assert (
|
assert (
|
||||||
generations[0].request_id
|
generations[0].request_id
|
||||||
== default_multi_requests_causal_lm_batch.requests[0].id
|
== default_multi_requests_causal_lm_batch.requests[0].data.id
|
||||||
)
|
)
|
||||||
assert (
|
assert (
|
||||||
generations[0].generated_text.generated_tokens
|
generations[0].generated_text.generated_tokens
|
||||||
== default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
== default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
|
||||||
)
|
)
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
||||||
|
|
||||||
|
import text_generation_server.habana_quantization_env
|
||||||
from text_generation_server.utils.convert import convert_file, convert_files
|
from text_generation_server.utils.convert import convert_file, convert_files
|
||||||
from text_generation_server.utils.dist import initialize_torch_distributed
|
from text_generation_server.utils.dist import initialize_torch_distributed
|
||||||
from text_generation_server.utils.weights import Weights
|
from text_generation_server.utils.weights import Weights
|
||||||
|
Loading…
Reference in New Issue
Block a user