causal_lm server tests rebased (#139)

Co-authored-by: Sylwester Fraczek <sfraczek@habana.ai>
Co-authored-by: Jacek Czaja <jczaja@habana.ai>
This commit is contained in:
Sylwester Fraczek 2024-05-06 15:55:35 +02:00 committed by GitHub
parent bad7fe720a
commit fe16a465a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 143 additions and 122 deletions

View File

@ -17,4 +17,4 @@ def default_pb_parameters():
@pytest.fixture @pytest.fixture
def default_pb_stop_parameters(): def default_pb_stop_parameters():
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10) return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)

View File

@ -7,25 +7,27 @@ from copy import copy
from transformers import AutoTokenizer from transformers import AutoTokenizer
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.models import get_model
from text_generation_server.models.causal_lm import ( from text_generation_server.models.causal_lm import (
CausalLM,
CausalLMBatch, CausalLMBatch,
PREFILL_BATCH_BUCKET_SIZE, PREFILL_BATCH_BUCKET_SIZE,
PAD_SEQUENCE_TO_MULTIPLE_OF PAD_SEQUENCE_TO_MULTIPLE_OF,
MAX_TOTAL_TOKENS,
BATCH_BUCKET_SIZE,
) )
PAD_TOKEN=0
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def default_causal_lm(): def default_causal_lm():
return CausalLM("gpt2") return get_model("meta-llama/Llama-2-7b-hf", None, None, None, None)
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def gpt2_tokenizer(): def default_tokenizer(default_causal_lm):
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left") default_causal_lm.tokenizer.pad_token_id = PAD_TOKEN
tokenizer.pad_token_id = 50256 return default_causal_lm.tokenizer
return tokenizer
@pytest.fixture @pytest.fixture
@ -46,14 +48,14 @@ def default_pb_batch(default_pb_request):
@pytest.fixture @pytest.fixture
def default_causal_lm_batch(default_pb_batch, gpt2_tokenizer): def default_causal_lm_batch(default_pb_batch, default_tokenizer):
return CausalLMBatch.from_pb( return CausalLMBatch.from_pb(
default_pb_batch, gpt2_tokenizer, torch.float32, torch.device("hpu") default_pb_batch, default_tokenizer, torch.float32, torch.device("hpu")
) )
@pytest.fixture @pytest.fixture
def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer): def default_multi_requests_causal_lm_batch(default_pb_request, default_tokenizer):
req_0 = copy(default_pb_request) req_0 = copy(default_pb_request)
req_0.id = 1 req_0.id = 1
req_1 = default_pb_request req_1 = default_pb_request
@ -62,7 +64,7 @@ def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer):
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2) batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
return CausalLMBatch.from_pb( return CausalLMBatch.from_pb(
batch_pb, gpt2_tokenizer, torch.float32, torch.device("hpu") batch_pb, default_tokenizer, torch.float32, torch.device("hpu")
) )
@ -78,17 +80,20 @@ def test_batch_from_pb(default_pb_batch, default_causal_lm_batch):
# For Gaudi we are adding padding of multiplication of bucket size # For Gaudi we are adding padding of multiplication of bucket size
size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE
assert len(batch.input_ids) == size_of_padded_to_bucket assert len(batch.input_ids) == size_of_padded_to_bucket
assert batch.input_ids[0][-2] == 14402 assert batch.input_ids[0][-2] == 4321
assert torch.all(batch.input_ids[0][:-2] == 50256) assert batch.input_ids[0][-3] == 1
assert batch.input_ids[0][-1] == 50256 assert torch.all(batch.input_ids[0][:-3] == PAD_TOKEN)
assert batch.input_ids[0][-1] == PAD_TOKEN
assert batch.attention_mask[0][-1] == 0
assert batch.attention_mask[0, -2] == 1 assert batch.attention_mask[0, -2] == 1
assert torch.all(batch.attention_mask[0, :-2] == 0) assert batch.attention_mask[0, -3] == 1
assert torch.all(batch.attention_mask[0, :-3] == 0)
assert batch.past_key_values is None assert batch.past_key_values is None
assert all( assert all(
[ [
torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0]) torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0])
for input_ids, request in zip(batch.input_ids, batch.requests) for input_ids, request in zip(batch.input_ids, batch.requests)
@ -110,73 +115,66 @@ def test_causal_lm_batch_type(default_causal_lm):
def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch): def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
sequence_length = len(default_causal_lm_batch.all_input_ids[0])
generations, next_batch, _ = default_causal_lm.generate_token(
default_causal_lm_batch
)
assert len(generations) == len(next_batch) sequence_length = len(default_causal_lm_batch.requests[0].all_input_ids)
generations, next_batch, _ = default_causal_lm.generate_token([default_causal_lm_batch])
padding = next_batch.requests[0].stopping_criteria.max_new_tokens
assert isinstance(next_batch, CausalLMBatch) assert isinstance(next_batch, CausalLMBatch)
assert len(next_batch.attention_mask[0]) == PAD_SEQUENCE_TO_MULTIPLE_OF
assert next_batch.requests[0].all_input_ids[-padding-2] == 4321
assert len(next_batch.all_input_ids) == len(next_batch) assert torch.all(next_batch.requests[0].all_input_ids[-padding-1:] == PAD_TOKEN)
assert len(next_batch.all_input_ids[0]) == sequence_length + 1 assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
assert len(next_batch.attention_mask[0]) == 11
assert next_batch.all_input_ids[0][-1] == 13
assert next_batch.all_input_ids[0][-2] == 14402
assert torch.all(next_batch.all_input_ids[0][:-2] == 50256)
assert torch.all(next_batch.attention_mask[0][0:2] == 1) generations, next_batch, _ = default_causal_lm.generate_token([default_causal_lm_batch])
assert torch.all(next_batch.attention_mask[0][2:] == 0) assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF-3:PAD_SEQUENCE_TO_MULTIPLE_OF] == 1)
assert torch.all(next_batch.attention_mask[0][:PAD_SEQUENCE_TO_MULTIPLE_OF-3] == 0)
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF+1:] == 0)
assert next_batch.input_ids.shape == (len(next_batch), 1) assert next_batch.requests[0].all_input_ids[-padding-2] == 4321
assert next_batch.input_ids[0, 0] == 13 assert next_batch.requests[0].all_input_ids[-padding-1] == 292
assert torch.all(next_batch.requests[0].all_input_ids[-padding:] == PAD_TOKEN)
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
assert next_batch.input_lengths == [2] assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF
assert next_batch.max_input_length == next_batch.input_lengths[0] assert next_batch.max_input_length == next_batch.input_length
assert next_batch.past_key_values is not None assert next_batch.past_key_values is not None
assert all( assert all(
[p[0].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values] [p[0].shape == (BATCH_BUCKET_SIZE, 32, MAX_TOTAL_TOKENS, 128) for p in next_batch.past_key_values]
) )
assert all( assert all(
[p[1].shape == (1, 12, sequence_length, 64) for p in next_batch.past_key_values] [p[1].shape == (BATCH_BUCKET_SIZE, 32, MAX_TOTAL_TOKENS, 128) for p in next_batch.past_key_values]
) )
assert all([generation.generated_text is None for generation in generations]) assert all([generation.generated_text is None for generation in generations])
assert all([len(generation.prefill_tokens) == 1 for generation in generations]) assert all([len(generation.prefill_tokens) == PAD_SEQUENCE_TO_MULTIPLE_OF-1 for generation in generations])
assert all( assert all([generation.tokens.token_ids[0] == 292 for generation in generations])
[ assert all([generation.tokens.texts[0] == "ing" for generation in generations])
token_id.item() == 13
for generation in generations
for token_id in generation.tokens.token_ids
]
)
assert all(
[
token_text == "."
for generation in generations
for token_text in generation.tokens.texts
]
)
assert generations[0].request_id == 0 assert generations[0].request_id == 0
def test_causal_lm_generate_token_completion( def test_causal_lm_generate_token_completion(
default_causal_lm, default_causal_lm_batch default_causal_lm, default_causal_lm_batch
): ):
next_batch = default_causal_lm_batch next_batch = default_causal_lm_batch
for _ in range(default_causal_lm_batch.stopping_criterias[0].max_new_tokens - 1): generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
generations, next_batch, _ = default_causal_lm.generate_token(next_batch)
for _ in range(default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens - 1):
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is None assert next_batch is None
assert len(generations) == 1 assert len(generations) == 1
assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
assert generations[0].request_id == default_causal_lm_batch.requests[0].id assert generations[0].request_id == default_causal_lm_batch.requests[0].data.id
assert ( assert (
generations[0].generated_text.generated_tokens generations[0].generated_text.generated_tokens
== default_causal_lm_batch.stopping_criterias[0].max_new_tokens == default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
) )
@ -184,51 +182,49 @@ def test_causal_lm_generate_token_completion_multi(
default_causal_lm, default_multi_requests_causal_lm_batch default_causal_lm, default_multi_requests_causal_lm_batch
): ):
next_batch = default_multi_requests_causal_lm_batch next_batch = default_multi_requests_causal_lm_batch
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
for i in range( for i in range(
default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 1 default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 1
): ):
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is not None assert next_batch is not None
assert len(generations) == 2 assert len(generations) == 2
assert generations[1].generated_text.text == ".java:784)" assert generations[1].generated_text.text == "ing the effect of a"
assert ( assert (
generations[1].request_id generations[1].request_id
== default_multi_requests_causal_lm_batch.requests[1].id == default_multi_requests_causal_lm_batch.requests[1].data.id
) )
assert ( assert (
generations[1].generated_text.generated_tokens generations[1].generated_text.generated_tokens
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens == default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
)
# Copy stopping_criterias before filtering
stopping_criterias = (
default_multi_requests_causal_lm_batch.stopping_criterias.copy()
) )
next_batch = next_batch.filter([next_batch.requests[0].id]) next_batch = next_batch.filter([next_batch.requests[0].data.id])
for _ in range( for _ in range(
stopping_criterias[0].max_new_tokens - stopping_criterias[1].max_new_tokens - 1 default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens - default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 1
): ):
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is None assert next_batch is None
assert len(generations) == 1 assert len(generations) == 1
assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
assert ( assert (
generations[0].request_id generations[0].request_id
== default_multi_requests_causal_lm_batch.requests[0].id == default_multi_requests_causal_lm_batch.requests[0].data.id
) )
assert ( assert (
generations[0].generated_text.generated_tokens generations[0].generated_text.generated_tokens
== default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens == default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
) )
@ -236,11 +232,13 @@ def test_batch_concatenate(
default_causal_lm, default_causal_lm_batch, default_multi_requests_causal_lm_batch default_causal_lm, default_causal_lm_batch, default_multi_requests_causal_lm_batch
): ):
next_batch_0 = default_causal_lm_batch next_batch_0 = default_causal_lm_batch
_, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0) _, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
_, next_batch_0, _ = default_causal_lm.generate_token(next_batch_0) _, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
_, next_batch_0, _ = default_causal_lm.generate_token([next_batch_0])
next_batch_1 = default_multi_requests_causal_lm_batch next_batch_1 = default_multi_requests_causal_lm_batch
_, next_batch_1, _ = default_causal_lm.generate_token(next_batch_1) _, next_batch_1, _ = default_causal_lm.generate_token([next_batch_1])
_, next_batch_1, _ = default_causal_lm.generate_token([next_batch_1])
# Clone past_key_values before concatenating to compare after, # Clone past_key_values before concatenating to compare after,
# because they are removed from the concatenated batches # because they are removed from the concatenated batches
@ -253,113 +251,135 @@ def test_batch_concatenate(
next_batch = CausalLMBatch.concatenate([next_batch_0, next_batch_1]) next_batch = CausalLMBatch.concatenate([next_batch_0, next_batch_1])
assert torch.equal(next_batch.all_input_ids[0], next_batch_0.all_input_ids[0]) assert torch.equal(next_batch.requests[0].all_input_ids, next_batch_0.requests[0].all_input_ids)
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0]) assert torch.equal(next_batch.requests[1].all_input_ids, next_batch_1.requests[0].all_input_ids)
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1]) assert torch.equal(next_batch.requests[2].all_input_ids, next_batch_1.requests[1].all_input_ids)
assert torch.all( assert torch.all(
next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1 next_batch.attention_mask[0:2, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
) )
assert torch.all( assert torch.all(
next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1 next_batch.attention_mask[2, -next_batch.right_padding - 4: -next_batch.right_padding] == 1
) )
assert torch.all(next_batch.attention_mask[1:, 3:] == 0) assert torch.all(
next_batch.attention_mask[3, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
)
assert torch.all(
next_batch.attention_mask[0:2, :-next_batch.right_padding-3] == 0)
assert torch.all(
next_batch.attention_mask[2, :-next_batch.right_padding-4] == 0)
assert torch.all(
next_batch.attention_mask[3, :-next_batch.right_padding-3] == 0)
assert next_batch.batch_id == 0 assert next_batch.batch_id == 0
assert next_batch.input_ids[0, 0] == 12355 assert next_batch.input_ids[0,-next_batch.right_padding - 3] == 1
assert torch.all(next_batch.input_ids[1:] == 13) assert next_batch.input_ids[0,-next_batch.right_padding - 2] == 4321
assert next_batch.input_ids[0,-next_batch.right_padding - 1] == 292
assert next_batch.input_lengths == [3, 2, 2] assert next_batch.max_input_length == 129
assert next_batch.max_input_length == 3
assert torch.all(next_batch.input_ids[0,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[1,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[2,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[3,-next_batch.right_padding:] == PAD_TOKEN)
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
assert next_batch.max_input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
assert next_batch.requests[0] == next_batch_0.requests[0] assert next_batch.requests[0] == next_batch_0.requests[0]
assert next_batch.requests[1:] == next_batch_1.requests assert next_batch.requests[1:] == next_batch_1.requests
assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] assert next_batch.requests[0].stopping_criteria == next_batch_0.requests[0].stopping_criteria
assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers assert next_batch.requests[1].stopping_criteria == next_batch_1.requests[0].stopping_criteria
assert next_batch.requests[2].stopping_criteria == next_batch_1.requests[1].stopping_criteria
assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0]
assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias assert next_batch.past_key_values is not None
assert all([p[0].shape == (8, 32, 2048, 128) for p in next_batch.past_key_values])
assert all([p[1].shape == (8, 32, 2048, 128) for p in next_batch.past_key_values])
assert next_batch.past_key_values is not None assert next_batch.past_key_values is not None
assert all([p[0].shape == (3, 12, 2, 64) for p in next_batch.past_key_values])
assert all([p[1].shape == (3, 12, 2, 64) for p in next_batch.past_key_values])
for i, past in enumerate(next_batch.past_key_values): for i, past in enumerate(next_batch.past_key_values):
assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:], past[0][0]) assert torch.equal(next_batch_0_past_key_values[i][0][0, 0,0:128], past[0][0][0][1:129])
assert torch.equal( assert torch.equal(
next_batch_1_past_key_values[i][0][:, :, -1:], past[0][1:, :, -1:, :] next_batch_1_past_key_values[i][0][:, :, 0:1][0], past[0][1:, :, 1 :2, :][0]
) )
assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:], past[1][0]) assert torch.equal(next_batch_0_past_key_values[i][1][0, 0,0:128], past[1][0][0][1:129])
assert torch.equal( assert torch.equal(
next_batch_1_past_key_values[i][1][:, :, -1:], past[1][1:, :, -1:, :] next_batch_1_past_key_values[i][1][:, :, 0:1][0], past[1][1:, :, 1 :2, :][0]
) )
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
for _ in range( for _ in range(
default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - 2 default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens - 2
): ):
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is not None assert next_batch is not None
assert len(generations) == 3 assert len(generations) == 3
assert generations[2].generated_text.text == ".java:784)" assert generations[2].generated_text.text == "ing the effect of a"
assert ( assert (
generations[2].request_id generations[2].request_id
== default_multi_requests_causal_lm_batch.requests[1].id == default_multi_requests_causal_lm_batch.requests[1].data.id
) )
assert ( assert (
generations[2].generated_text.generated_tokens generations[2].generated_text.generated_tokens
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens == default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
) )
next_batch = next_batch.filter( next_batch = next_batch.filter(
[next_batch.requests[0].id, next_batch.requests[1].id] [next_batch.requests[0].data.id, next_batch.requests[1].data.id]
) )
for _ in range( for _ in range(
default_causal_lm_batch.stopping_criterias[0].max_new_tokens default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
- 2 - 2
): ):
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is not None assert next_batch is not None
assert len(generations) == 2 assert len(generations) == 2
assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
assert generations[0].request_id == default_causal_lm_batch.requests[0].id assert generations[0].request_id == default_causal_lm_batch.requests[0].data.id
assert ( assert (
generations[0].generated_text.generated_tokens generations[0].generated_text.generated_tokens
== default_causal_lm_batch.stopping_criterias[0].max_new_tokens == default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
) )
next_batch = next_batch.filter([next_batch.requests[1].id]) next_batch = next_batch.filter([next_batch.requests[1].data.id])
for _ in range( for _ in range(
default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
- default_causal_lm_batch.stopping_criterias[0].max_new_tokens - default_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens - default_multi_requests_causal_lm_batch.requests[1].stopping_criteria.max_new_tokens
- 4 - 4
): ):
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == len(next_batch) assert len(generations) == len(next_batch)
generations, next_batch, _ = default_causal_lm.generate_token(next_batch) generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert next_batch is None assert next_batch is None
assert len(generations) == 1 assert len(generations) == 1
assert generations[0].generated_text.text == ".java:784) at net.minecraft." assert generations[0].generated_text.text == "ing the effect of a new method for the detection"
assert ( assert (
generations[0].request_id generations[0].request_id
== default_multi_requests_causal_lm_batch.requests[0].id == default_multi_requests_causal_lm_batch.requests[0].data.id
) )
assert ( assert (
generations[0].generated_text.generated_tokens generations[0].generated_text.generated_tokens
== default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens == default_multi_requests_causal_lm_batch.requests[0].stopping_criteria.max_new_tokens
) )

View File

@ -1,5 +1,6 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. # Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import text_generation_server.habana_quantization_env
from text_generation_server.utils.convert import convert_file, convert_files from text_generation_server.utils.convert import convert_file, convert_files
from text_generation_server.utils.dist import initialize_torch_distributed from text_generation_server.utils.dist import initialize_torch_distributed
from text_generation_server.utils.weights import Weights from text_generation_server.utils.weights import Weights