From fc127312dfcafab371e4ff3c3a31d955cf1d90fb Mon Sep 17 00:00:00 2001 From: fxmarty <9808326+fxmarty@users.noreply.github.com> Date: Fri, 17 May 2024 07:35:43 +0000 Subject: [PATCH] update tgi version --- docs/source/basic_tutorials/gated_model_access.md | 2 +- docs/source/quicktour.md | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/source/basic_tutorials/gated_model_access.md b/docs/source/basic_tutorials/gated_model_access.md index 060d177d..970afa0e 100644 --- a/docs/source/basic_tutorials/gated_model_access.md +++ b/docs/source/basic_tutorials/gated_model_access.md @@ -19,6 +19,6 @@ docker run --gpus all \ --shm-size 1g \ -e HUGGING_FACE_HUB_TOKEN=$token \ -p 8080:80 \ - -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 \ + -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.3 \ --model-id $model ``` diff --git a/docs/source/quicktour.md b/docs/source/quicktour.md index 70cf575c..6e055de1 100644 --- a/docs/source/quicktour.md +++ b/docs/source/quicktour.md @@ -8,7 +8,7 @@ Let's say you want to deploy [teknium/OpenHermes-2.5-Mistral-7B](https://hugging model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run -docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model +docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.3 --model-id $model ``` @@ -20,7 +20,7 @@ To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://d TGI also supports ROCm-enabled AMD GPUs (only MI210 and MI250 are tested), details are available in the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html). To launch TGI on ROCm GPUs, please use instead: ```bash -docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model +docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.3-rocm --model-id $model ``` Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. @@ -91,7 +91,7 @@ curl 127.0.0.1:8080/generate \ To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. ```bash -docker run ghcr.io/huggingface/text-generation-inference:1.4 --help +docker run ghcr.io/huggingface/text-generation-inference:2.0.3 --help ```