multi-modality initial PR

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
Wang, Yi A 2025-03-19 23:27:27 -07:00
parent d5b78ba16f
commit f95aa42660
8 changed files with 1829 additions and 47 deletions

View File

@ -19,18 +19,10 @@ from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.bloom import BLOOM
from text_generation_server.models.starcoder import StarCoder
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
from text_generation_server.models.custom_modeling.mllama import (
MllamaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.llava_next import (
LlavaNextForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
PhiMoEConfig,
)
# from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
from text_generation_server.utils.adapter import (
AdapterParameters,
build_layer_weight_lookup,
@ -58,8 +50,8 @@ if ATTENTION == "paged":
try:
from text_generation_server.models.flash_causal_lm import FlashCausalLM
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
from text_generation_server.models.flash_vlm_causal_lm import FlashVlmCausalLM
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLM
from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
FlashDeepseekV2ForCausalLM,
DeepseekV2Config,
@ -101,12 +93,12 @@ try:
FlashPhiForCausalLM,
)
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
from text_generation_server.models.custom_modeling.mllama import (
MllamaForConditionalGeneration,
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
from text_generation_server.models.custom_modeling.flash_mllama import (
FlashMllamaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.llava_next import (
LlavaNextForConditionalGeneration,
from text_generation_server.models.custom_modeling.flash_llava_next import (
FlashLlavaNextForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
@ -751,7 +743,7 @@ def get_model(
trust_remote_code=trust_remote_code,
)
elif model_type == QWEN2_VL:
return VlmCausalLM(
return FlashVlmCausalLM(
model_id=model_id,
model_class=Qwen2VLForConditionalGeneration,
revision=revision,
@ -764,7 +756,7 @@ def get_model(
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == QWEN2_5_VL:
return VlmCausalLM(
return FlashVlmCausalLM(
model_id=model_id,
model_class=Qwen2_5VLForConditionalGeneration,
revision=revision,
@ -779,10 +771,10 @@ def get_model(
processor_class=Qwen2_5_VLProcessor,
)
elif model_type == MLLAMA:
return MllamaCausalLM(
return FlashMllamaCausalLM(
model_id=model_id,
model_class=MllamaForConditionalGeneration,
batch_class=MllamaCausalLMBatch,
model_class=FlashMllamaForConditionalGeneration,
batch_class=FlashMllamaCausalLMBatch,
revision=revision,
quantize=quantize,
speculator=speculator,
@ -792,7 +784,7 @@ def get_model(
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == IDEFICS2:
return VlmCausalLM(
return FlashVlmCausalLM(
model_id=model_id,
model_class=Idefics2ForConditionalGeneration,
revision=revision,
@ -807,7 +799,7 @@ def get_model(
processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
)
elif model_type == IDEFICS3:
return VlmCausalLM(
return FlashVlmCausalLM(
model_id=model_id,
model_class=Idefics3ForConditionalGeneration,
revision=revision,
@ -822,7 +814,7 @@ def get_model(
processor_kwargs={"size": {"longest_edge": 1456}},
)
elif model_type == PALIGEMMA:
return VlmCausalLM(
return FlashVlmCausalLM(
model_id=model_id,
model_class=PaliGemmaForConditionalGeneration,
revision=revision,
@ -837,8 +829,8 @@ def get_model(
batch_class=PaliGemmaBatch,
)
elif model_type == LLAVA_NEXT:
return VlmCausalLM(
model_class=LlavaNextForConditionalGeneration,
return FlashVlmCausalLM(
model_class=FlashLlavaNextForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=quantize,
@ -847,6 +839,15 @@ def get_model(
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
)
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
from text_generation_server.models.custom_modeling.mllama import (
MllamaForConditionalGeneration,
)
from text_generation_server.models.custom_modeling.llava_next import (
LlavaNextForConditionalGeneration,
)
adapt_transformers_to_gaudi()
if SDP_ON_BF16 == 1:
torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)

View File

@ -503,7 +503,7 @@ class FlashLlamaModel(torch.nn.Module):
# Skip first and last layers
for layer_id in range(1, config.num_hidden_layers - 1):
if layer_id in self.cross_attention_layers:
from text_generation_server.models.custom_modeling.mllama import (
from text_generation_server.models.custom_modeling.flash_mllama import (
FlashLlamaCrossLayer,
)

View File

@ -0,0 +1,290 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Llava-NeXT model."""
from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.layers.attention import Seqlen
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (height, width).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (height, width).
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (`torch.Tensor`):
The image tensor, assumed to be of shape (num_channels, height, width).
original_size (`tuple`):
The original size of the image (height, width).
Returns:
`torch.Tensor`: The unpadded image tensor.
"""
original_height, original_width = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
class LlavaNextMultiModalProjector(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.linear_1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.linear_1", config=config, weights=weights, bias=True
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.linear_2", config=config, weights=weights, bias=True
)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class FlashLlavaNextForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
vision_config = config.vision_config
# Instead of selecting in hidden_states[-2].
# Instead compute only the n -2 + 1 layers and don't pool
if config.vision_feature_layer < 0:
vision_config.num_hidden_layers += config.vision_feature_layer + 1
else:
vision_config.num_hidden_layers = config.vision_feature_layer + 1
self.vision_tower = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
)
self.multi_modal_projector = LlavaNextMultiModalProjector(
prefix="multi_modal_projector", config=config, weights=weights
)
self.image_newline = weights.get_tensor("image_newline")
self.vocab_size = config.text_config.vocab_size
self.config = config
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
self.text_model = load_text_model(
prefix="language_model" if not prefix else f"{prefix}.language_model",
config=config.text_config,
weights=weights,
)
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
image_features: torch.Tensor,
):
"""In place merges in vision_embeddings with inputs_embeds."""
mask = input_ids == self.config.image_token_index
# Let's pray we have enabled enough slots !
try:
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
except Exception as e:
raise RuntimeError(
f"Cannot fill images right now. If error happens at warmup, make sure you have enough `--max-input-tokens` to handle images. If error happens at regular runtime, please fill in an issue: {e}"
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
# Unused for this model
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None and len(pixel_values) > 0:
# num_special_image_tokens = (input_ids == self.config.image_token_index).sum()
# assert num_special_image_tokens == len(pixel_values), f"Received {num_special_image_tokens} for {len(pixel_values)} images, this is invalid"
# 1. Extract the input embeddings
# 2. Merge text and images
num_images, num_patches, channels, height, width = pixel_values.shape
pixel_values = pixel_values.view(
num_images * num_patches, channels, height, width
)
image_features = self.vision_tower(pixel_values)
# selected_image_feature = image_features.hidden_states[self.config.vision_feature_layer]
# Already done within the clip model
selected_image_feature = image_features.last_hidden_state
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise RuntimeError(
f"Strategy `{self.config.vision_feature_select_strategy}` is not supported/valid."
)
image_features = self.multi_modal_projector(selected_image_feature)
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [num_patches] * num_images
image_features = torch.split(image_features, split_sizes, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = (
self.config.vision_config.image_size
// self.config.vision_config.patch_size
)
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
if height * width != base_image_feature.shape[0]:
raise ValueError(
"The number of patches is not consistent with the image size."
)
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(
*image_feature.shape[:-1], 1
),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
else:
image_feature = image_feature[0]
image_feature = torch.cat(
(image_feature, self.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_features
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
true_max_s=max_s,
prefill_cache_indices=None,
adapter_data=adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -0,0 +1,996 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mllama model."""
from typing import Optional, Tuple, List
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
import torch.nn.functional as F
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
FastLinear,
)
from text_generation_server.layers.attention import (
Seqlen,
)
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
from habana_frameworks.torch.hpex.kernels import FusedSDPA
from vllm_hpu_extension.utils import ModuleFusedSDPA
def _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask: torch.Tensor,
num_patches: int,
target_length: int,
dtype: torch.dtype,
) -> torch.Tensor:
# Expand aspect ratio mask to target_length
batch_size, max_num_tiles = aspect_ratio_mask.shape
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype)
attention_mask = attention_mask.repeat(1, 1, target_length, 1)
# Mask padding patches
pad_patches = target_length - num_patches
attention_mask[:, :, -pad_patches:] = 0
# Invert the mask (0 -> 1, 1 -> 0)
attention_mask = 1 - attention_mask
# Reshape to 2D and create 4D attention mask
# (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length)
attention_mask = attention_mask.reshape(
batch_size, max_num_tiles * target_length, 1
)
attention_mask = (
attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min
)
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
return causal_mask
def _prepare_cross_attention_mask(
cross_attention_mask: torch.Tensor,
num_vision_tokens: int,
dtype: str,
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape so it can be used by attn module
batch_size, text_total_length, *_ = cross_attention_mask.shape
cross_attention_mask = cross_attention_mask.repeat_interleave(
num_vision_tokens, dim=3
)
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
cross_attention_mask = cross_attention_mask.unsqueeze(1)
# invert the mask
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
cross_attention_mask = inverted_cross_attn_mask.masked_fill(
inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min
)
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
# last dimension contains negative infinity values, otherwise it's 1
negative_inf_value = torch.finfo(dtype).min
full_text_row_masked_out_mask = (
(cross_attention_mask != negative_inf_value)
.any(dim=-1)
.type_as(cross_attention_mask)[..., None]
)
cross_attention_mask *= full_text_row_masked_out_mask
return cross_attention_mask, full_text_row_masked_out_mask
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision
class MllamaVisionMLP(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MllamaVisionSdpaAttention(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.head_dim = config.hidden_size // config.attention_heads
self.num_heads = config.attention_heads // weights.process_group.size()
self.qkv_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qkv = self.qkv_proj(hidden_state)
query, key, value = qkv.split(
[
self.head_dim * self.num_heads,
self.head_dim * self.num_heads,
self.head_dim * self.num_heads,
],
dim=2,
)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
attn_output = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
return output
class MllamaVisionEncoderLayer(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.attention_heads
self.is_gated = is_gated
self.intermediate_size = config.intermediate_size
self.self_attn = MllamaVisionSdpaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.mlp = MllamaVisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights
)
self.input_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05
)
self.post_attention_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05
)
# there used to be an if else here, no code path
if is_gated:
self.gate_attn = nn.Parameter(
weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False
)
self.gate_ffn = nn.Parameter(
weights.get_tensor(f"{prefix}.gate_ffn"), requires_grad=False
)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask)
gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
hidden_state = residual + gate_attn * hidden_state
# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
hidden_state = residual + gate_ffn * hidden_state
return hidden_state
class MllamaVisionEncoder(nn.Module):
def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int):
super().__init__()
self.config = config
self.layers = [
MllamaVisionEncoderLayer(
prefix=f"{prefix}.layers.{i}",
config=config,
weights=weights,
is_gated=is_gated,
)
for i in range(num_layers)
]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
encoder_states = [hidden_states]
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
)
hidden_states = layer_outputs
encoder_states.append(hidden_states)
return hidden_states, encoder_states
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.embedding = TensorParallelEmbedding(
prefix=f"{prefix}.embedding", weights=weights
)
self.gate = nn.Parameter(
weights.get_tensor(f"{prefix}.gate"), requires_grad=False
)
def forward(
self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
) -> torch.Tensor:
embeddings = self.embedding(aspect_ratio_ids)
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)
# Always gated.
embeddings = embeddings * self.gate.tanh()
hidden_state = hidden_state + embeddings
return hidden_state
class MllamaPrecomputedPositionEmbedding(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
self.hidden_size = config.hidden_size
self.scale = config.hidden_size**-0.5
self.gate = nn.Parameter(
weights.get_tensor(f"{prefix}.gate"), requires_grad=False
)
# position embedding
embedding = nn.Parameter(
weights.get_tensor(f"{prefix}.embedding"), requires_grad=False
)
self.gated_position_embedding = (1 - self.gate.tanh()) * embedding
self.tile_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.tile_embedding", weights=weights
)
def forward(
self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
) -> torch.Tensor:
# position embeddings
hidden_state = hidden_state + self.gated_position_embedding.view(
1, 1, self.num_patches, self.hidden_size
)
# precomputed tile position embeddings
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
batch_size = hidden_state.shape[0]
tile_position_embedding = tile_position_embedding.reshape(
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
)
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
hidden_state = hidden_state + gated_tile_position_embedding
return hidden_state
class MllamaVisionModel(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.image_size = config.image_size
self.patch_size = config.patch_size
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.num_channels = config.num_channels
self.intermediate_layers_indices = config.intermediate_layers_indices
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
self.scale = config.hidden_size**-0.5
self.dtype = weights.dtype
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
bias=False,
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.class_embedding = nn.Parameter(
weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False
)
self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
prefix=f"{prefix}.gated_positional_embedding",
config=config,
weights=weights,
)
self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
prefix=f"{prefix}.pre_tile_positional_embedding",
config=config,
weights=weights,
)
self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
prefix=f"{prefix}.post_tile_positional_embedding",
config=config,
weights=weights,
)
## layer norms
self.layernorm_pre = nn.LayerNorm.load(
prefix=f"{prefix}.layernorm_pre",
weights=weights,
# torch default
eps=1e-05,
)
self.layernorm_post = nn.LayerNorm.load(
prefix=f"{prefix}.layernorm_post",
weights=weights,
# torch default
eps=1e-05,
)
## encoders
self.transformer = MllamaVisionEncoder(
prefix=f"{prefix}.transformer",
config=config,
weights=weights,
is_gated=False,
num_layers=config.num_hidden_layers,
)
self.global_transformer = MllamaVisionEncoder(
prefix=f"{prefix}.global_transformer",
config=config,
weights=weights,
is_gated=True,
num_layers=config.num_global_layers,
)
def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size, _, hidden_size = hidden_state.shape
class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
return hidden_state
def forward(
self,
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
(
batch_size,
num_concurrent_media,
num_tiles,
num_channels,
height,
width,
) = pixel_values.shape
pixel_values = pixel_values.reshape(
batch_size * num_concurrent_media * num_tiles, num_channels, height, width
)
aspect_ratio_ids = aspect_ratio_ids.reshape(
batch_size * num_concurrent_media, -1
)
# patch embedding
patch_embeds = self.patch_embedding(pixel_values)
hidden_state = patch_embeds.flatten(2).transpose(1, 2)
# tile embeddings
_, num_patches, dim = hidden_state.shape
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, -1, dim
)
hidden_state = self.pre_tile_positional_embedding(
hidden_state, aspect_ratio_ids
)
# apply cls token
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media * num_tiles, num_patches, dim
)
hidden_state = self.apply_class_embedding(hidden_state)
num_patches += 1
# apply position embeddings
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches, dim
)
hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)
# apply encoder
hidden_state = self.layernorm_pre(hidden_state)
# Compute the number of tokens to pad
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
# Compute padding tuple for pad function
padding = (
0,
0,
0,
num_padding_patches,
) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
# Pad the tensor
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
slice_index = -num_padding_patches if num_padding_patches > 0 else None
if attention_mask is not None:
attention_mask = attention_mask.reshape(
batch_size * num_concurrent_media, -1
)
attention_mask = _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask=attention_mask,
num_patches=self.num_patches,
target_length=hidden_state.shape[2],
dtype=self.dtype,
)
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
hidden_state, all_intermediate_hidden_states = self.transformer(
hidden_state,
attention_mask=attention_mask,
)
intermediate_hidden_states = [
hidden_state
for idx, hidden_state in enumerate(all_intermediate_hidden_states)
if idx in self.intermediate_layers_indices
]
intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1)
# apply global encoder
hidden_state = self.layernorm_post(hidden_state)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
dim,
)
hidden_state = self.post_tile_positional_embedding(
hidden_state, aspect_ratio_ids
)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles * (num_patches + num_padding_patches),
dim,
)
hidden_state, _ = self.global_transformer(
hidden_state, attention_mask=attention_mask
)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
dim,
)
hidden_state = hidden_state[:, :, :slice_index]
# adding intermediate layer outputs
hidden_state = hidden_state.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, dim
)
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size * num_concurrent_media,
num_tiles,
num_patches + num_padding_patches,
-1,
)
intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, -1
)
hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
return hidden_state
class MllamaTextCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, *, prefix, config, weights, layer_idx):
super().__init__()
self.config = config
self.num_heads = self.config.num_attention_heads
self.num_key_value_heads = self.config.num_key_value_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.head_size = config.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.layer_idx = layer_idx
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
self.num_key_value_heads // weights.process_group.size()
)
self.q_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_proj",
weights=weights,
bias=False,
)
self.k_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.k_proj",
weights=weights,
bias=False,
)
self.v_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.v_proj",
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.q_norm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps
)
self.k_norm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps
)
self.softmax_scale = self.head_size**-0.5
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
# past_key_value=None,
# attention_mask: Optional[torch.Tensor] = None,
# cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# hidden_states = hidden_states.unsqueeze(0)
# bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(-1, self.num_heads, self.head_size)
query_states = self.q_norm(query_states)
(
cross_attention_states,
cu_seqlen_q,
cu_seqlen_k,
max_q,
max_k,
indices,
) = cross_attention_states
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(-1, self.num_key_value_heads, self.head_size)
value_states = value_states.view(-1, self.num_key_value_heads, self.head_size)
key_states = self.k_norm(key_states)
# key_states = key_states.repeat(1, self.num_key_value_groups, 1)
# value_states = value_states.repeat(1, self.num_key_value_groups, 1)
causal = False
# logger.info(
# f"Q: {query_states.shape} -K {key_states.shape} - V{value_states.shape}"
# )
# execute sdpa
query_states = query_states.unsqueeze(0).transpose(1, 2)
key_states = key_states.unsqueeze(0).transpose(1, 2)
value_states = value_states.unsqueeze(0).transpose(1, 2)
fsdpa_op = ModuleFusedSDPA(FusedSDPA)
attn_output = fsdpa_op(
query_states,
key_states,
value_states,
attn_mask=None,
dropout_p=0.0,
is_causal=causal,
scale=None,
softmax_mode="None",
recompute_mode=None,
valid_sequence_lengths=None,
)
attn_output = attn_output.transpose(1, 2).squeeze(0).contiguous()
attn_output = self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
return attn_output
# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText
class MllamaTextMLP(nn.Module):
def __init__(self, *, prefix, config, weights):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
shape = x.shape
gate_up_states = self.gate_up_proj(x)
gate_up_states = gate_up_states.view(*shape[:-1], 2, self.intermediate_size)
result = self.down_proj(
self.act_fn(gate_up_states[:, 0]) * gate_up_states[:, 1]
)
return result
class FlashLlamaCrossLayer(torch.nn.Module):
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
def __init__(self, *, prefix, config, weights, index) -> None:
layer_idx = index
super().__init__()
self.cross_attn = MllamaTextCrossAttention(
prefix=f"{prefix}.cross_attn",
config=config,
weights=weights,
layer_idx=layer_idx,
)
self.input_layernorm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.cross_attn_attn_gate = torch.nn.Parameter(
weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False
)
self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.post_attention_layernorm = MllamaTextRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
self.cross_attn_mlp_gate = torch.nn.Parameter(
weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False
)
self.layer_idx = layer_idx
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
adapter_data,
cross_attention_states, # [ IB, ...]
) -> Tuple[torch.Tensor, torch.Tensor]:
if cross_attention_states is None:
return hidden_states, residual
if residual is not None:
hidden_states += residual
indices = cross_attention_states[-1]
out_hidden_states = hidden_states[:]
if len(indices) > 0:
assert max(indices) < hidden_states.shape[0]
hidden_states = hidden_states[indices]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.cross_attn(
hidden_states=hidden_states,
# attention_mask=cross_attention_mask,
cross_attention_states=cross_attention_states,
)
hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
out_hidden_states[indices] = hidden_states
hidden_states = out_hidden_states
return hidden_states, None
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText
class MllamaTextRMSNorm(nn.Module):
def __init__(self, weight, eps):
super().__init__()
self.weight = weight
self.variance_epsilon = eps
@classmethod
def load(cls, *, prefix, weights, eps):
weight = nn.Parameter(
weights.get_tensor(f"{prefix}.weight"), requires_grad=False
)
return cls(weight=weight, eps=eps)
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class FlashMllamaForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = None
config.vision_config.speculator = config.speculator
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
config.text_config._attn_implementation = "sdpa"
self.hidden_size = config.text_config.hidden_size
self.vision_model = MllamaVisionModel(
prefix="vision_model", config=config.vision_config, weights=weights
)
self.multi_modal_projector = FastLinear.load(
prefix="multi_modal_projector", config=config, weights=weights, bias=True
)
self.text_model = FlashLlamaForCausalLM(
prefix="language_model", config=config.text_config, weights=weights
)
self.config = config
self.dtype = weights.dtype
self.device = weights.device
def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
if aspect_ratio_ids is None:
raise ValueError(
"`aspect_ratio_ids` must be provided if `pixel_values` is provided"
)
# logger.info(f"PIxel values {pixel_values.shape}")
batch_size = pixel_values.shape[0]
vision_states = self.vision_model(
pixel_values, aspect_ratio_ids, aspect_ratio_mask
)
cross_attention_states = self.multi_modal_projector(vision_states).reshape(
-1, vision_states.shape[-2], self.hidden_size
)
_, _, h = cross_attention_states.shape
cross_attention_states = cross_attention_states.view(batch_size, -1, h)
# logger.info(f"cross {cross_attention_states.shape}")
return cross_attention_states
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor],
adapter_data: Optional[torch.Tensor] = None,
# XXX: Putting these as optional so that the cuda warmup calls can go through.
cross_attention_states: Optional[torch.Tensor] = None,
image_indices=None,
):
if cross_attention_states is not None:
seqlen_q = len(image_indices)
n_images = cross_attention_states.shape[0]
seqlen_k = cross_attention_states.shape[1]
device = cross_attention_states.device
if cu_seqlen_prefill is not None:
offset = 0
cu_q = []
indices = []
for index in image_indices:
cu_q.append(offset)
length = seqlen.input_lengths[index].item()
assert index < seqlen.cu_seqlen_q.shape[0]
input_ids_offset = seqlen.cu_seqlen_q[index]
indices.extend(range(input_ids_offset, input_ids_offset + length))
offset += length
cu_q.append(offset)
cu_seqlen_q = torch.Tensor(cu_q).to(device=device, dtype=torch.int32)
assert max(indices) < input_ids.shape[0]
cu_seqlen_k = (
torch.arange(
n_images + 1,
device=device,
dtype=torch.int32,
)
* seqlen_k
)
max_q = cu_seqlen_q[-1].item()
max_k = seqlen_k
else:
cu_seqlen_q = torch.arange(
seqlen_q + 1, device=device, dtype=torch.int32
)
seqlen_k = cross_attention_states.shape[1]
n_images = cross_attention_states.shape[0]
cu_seqlen_k = (
torch.arange(
n_images + 1,
device=device,
dtype=torch.int32,
)
* seqlen_k
)
max_q = seqlen_q
max_k = seqlen_k
indices = image_indices[:]
cross_attention_states = (
cross_attention_states,
cu_seqlen_q,
cu_seqlen_k,
max_q,
max_k,
indices,
)
outputs = self.text_model(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
prefill_cache_indices=prefill_cache_indices,
lm_head_indices=lm_head_indices,
adapter_data=adapter_data,
cross_attention_states=cross_attention_states,
)
return outputs

View File

@ -0,0 +1,480 @@
import torch
from PIL import Image
from io import BytesIO
from opentelemetry import trace
from typing import Iterable, Optional, Tuple, List, Type, Dict
from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.pb import generate_pb2
from text_generation_server.models.flash_causal_lm import (
FlashCausalLMBatch,
FlashCausalLM,
)
from text_generation_server.models.globals import PREFIX_CACHING
from loguru import logger
from text_generation_server.utils.log import log_master
from transformers import AutoProcessor
from text_generation_server.layers.attention import Seqlen
tracer = trace.get_tracer(__name__)
IDEFICS2_FAKE_TOKEN = "<fake_token_around_image>"
IDEFICS2_IMAGE_TOKEN = "<image>"
IDEFICS3_IMAGE_TOKEN = "<image>"
IDEFICS3_FAKE_IMAGE_TOKEN = "<fake_token_around_image>"
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
# copied from: https://github.com/huggingface/transformers/blob/02ed609285c2448b3b54c31e362f2c389fa952ab/src/transformers/models/idefics3/processing_idefics3.py#L44-L60
def _prompt_split_image(
*,
image_seq_len: int,
image_rows: int,
image_cols: int,
fake_token_around_image: str,
image_token: str,
global_img_token: str,
):
"""Prompt with expanded image tokens for when the image is split into patches."""
text_split_images = ""
for n_h in range(image_rows):
for n_w in range(image_cols):
text_split_images += (
f"{fake_token_around_image}"
+ f"<row_{n_h + 1}_col_{n_w + 1}>"
+ f"{image_token}" * image_seq_len
)
text_split_images += "\n"
text_split_images += (
f"\n{fake_token_around_image}"
+ f"{global_img_token}"
+ f"{image_token}" * image_seq_len
+ f"{fake_token_around_image}"
)
return text_split_images
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (height, width).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def image_text_replacement(processor, image_input, config, image_id: int) -> str:
if config.model_type == "idefics2":
image_seq_len = 64
image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}"
if processor.image_processor.do_image_splitting:
image_str *= 5
return image_str
if config.model_type == "idefics3":
# TODO: implement this in a more general way
n_rows = image_input["rows"][0][image_id]
n_cols = image_input["cols"][0][image_id]
image_seq_len = int(
((config.vision_config.image_size // config.vision_config.patch_size) ** 2)
/ (config.scale_factor**2)
)
image_str = _prompt_split_image(
image_seq_len=image_seq_len,
image_rows=n_rows,
image_cols=n_cols,
fake_token_around_image=IDEFICS3_FAKE_IMAGE_TOKEN,
image_token=IDEFICS3_IMAGE_TOKEN,
global_img_token=IDEFICS3_GLOBAL_IMG_TOKEN,
)
return image_str
elif config.model_type == "llava_next":
height, width = image_input["image_sizes"][image_id]
num_features = get_number_of_features(height, width, config)
log_master(
logger.info,
f"Found {num_features} features in image of resolution {height}x{width}",
)
return "<image>" * num_features
elif config.model_type == "paligemma":
return "<image>" * config.text_config.num_image_tokens
elif config.model_type == "qwen2_vl":
grid_t, grid_h, grid_w = image_input["image_grid_thw"][image_id]
num_pads = grid_t * grid_h * grid_w // 4
padding = "<|image_pad|>" * num_pads
return f"<|vision_start|>{padding}<|vision_end|>"
elif config.model_type == "qwen2_5_vl":
grid_t, grid_h, grid_w = image_input["image_grid_thw"][image_id]
num_pads = grid_t * grid_h * grid_w // 4
padding = "<|image_pad|>" * num_pads
return f"<|vision_start|>{padding}<|vision_end|>"
elif config.model_type == "gemma3":
# TODO: get correct number of features via reviewing the Gemma3 architecture
# and calculating the number of image tokens
num_pads = 256
padding = "<image_soft_token>" * num_pads
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
else:
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
def image_text_replacement_fixup(config, text: str) -> str:
if config.model_type == "idefics2":
return text.replace(
f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN
)
return text
def get_unpadded_features(
original_height: int,
original_width: int,
npatches: int,
num_patch_height: int,
num_patch_width: int,
) -> Tuple[int, int]:
current_height = npatches * num_patch_height
current_width = npatches * num_patch_width
aspect_ratio: float = original_width / original_height
current_aspect_ratio: float = current_width / current_height
if aspect_ratio > current_aspect_ratio:
new_height = (original_height * current_width) // original_width
padding = (current_height - new_height) // 2
current_height = current_height - (2 * padding)
else:
new_width = (original_width * current_height) // original_height
padding = (current_width - new_width) // 2
current_width = current_width - (2 * padding)
unpadded_features = current_height * current_width
newline_features = current_height
return (unpadded_features, newline_features)
def get_number_of_features(height: int, width: int, config) -> int:
# From config
# Hardcoded for CLIP for now
# image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
image_grid_pinpoints = config.image_grid_pinpoints
image_size = config.vision_config.image_size
patch_size = config.vision_config.patch_size
assert image_size % patch_size == 0
npatches = image_size // patch_size
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
[height, width],
image_grid_pinpoints,
image_size,
)
unpadded_features, newline_features = get_unpadded_features(
height, width, npatches, num_patch_height, num_patch_width
)
# The base patch covers the entire image
base_features = npatches**2
return unpadded_features + newline_features + base_features
class FlashVlmCausalLMBatch(FlashCausalLMBatch):
pixel_values: Optional[List[torch.Tensor]]
pixel_attention_mask: Optional[List[torch.Tensor]]
image_sizes: Optional[List[Tuple[int, int]]]
image_grid_thw: Optional[torch.Tensor]
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super(FlashVlmCausalLMBatch, cls).concatenate(batches)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
return batch
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]):
batch = super().filter(request_ids)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
return batch
@classmethod
def batch_tokenized_inputs(
cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config
):
# Process images first. We need all of them so that the processor
# can make the image splits the same size. And we need the final
# sizes to insert correct number of image tokens.
images = []
for r in requests:
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
pass
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
# qwen2_vl expects images to be greater than 20 pixels, this is for warmup since the
# default warmup image is 20x20
if config.model_type in {"qwen2_vl", "qwen2_5_vl"}:
if image.width <= 20:
w = image.width * 2
h = image.height * 2
image = image.resize((w, h))
if config.model_type == "llava_next":
images.append(image)
elif config.model_type == "gemma3":
images.append(image)
else:
images.append([image])
else:
raise RuntimeError(f"Invalid chunk type {chunk_type}")
if images:
kwargs = {}
if (
hasattr(processor, "image_processor_class")
and processor.image_processor_class == "Idefics3ImageProcessor"
):
kwargs["return_row_col_info"] = True
image_inputs = processor.image_processor(
images, return_tensors="pt", **kwargs
)
else:
image_inputs = None
batch_tokenized_inputs = []
max_length = 0
image_id = 0
for r in requests:
full_text = ""
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
full_text += chunk.text
elif chunk_type == "image":
full_text += image_text_replacement(
processor, image_inputs, config, image_id
)
image_id += 1
full_text = image_text_replacement_fixup(config, full_text)
input_ids = tokenizer(
full_text,
truncation=True,
max_length=r.truncate,
add_special_tokens=r.add_special_tokens,
)["input_ids"]
max_length = max(max_length, len(input_ids))
batch_tokenized_inputs.append(input_ids)
return batch_tokenized_inputs, image_inputs
@classmethod
def from_pb_processor(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
processor,
config,
dtype: torch.dtype,
device: torch.device,
) -> "FlashVlmCausalLMBatch":
batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
pb.requests, tokenizer, processor, config
)
batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
if image_inputs is not None:
batch.pixel_values = image_inputs["pixel_values"].to(device=device)
if "pixel_attention_mask" in image_inputs:
batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
device=device
)
else:
batch.pixel_attention_mask = None
if "image_sizes" in image_inputs:
batch.image_sizes = image_inputs["image_sizes"].to(device=device)
else:
batch.image_sizes = None
if "image_grid_thw" in image_inputs:
batch.image_grid_thw = image_inputs["image_grid_thw"].to(device=device)
else:
batch.image_grid_thw = None
else:
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
return batch
class FlashVlmCausalLM(FlashCausalLM):
def __init__(
self,
model_id: str,
*,
processor_class=AutoProcessor,
processor_kwargs=None,
batch_class=FlashVlmCausalLMBatch,
revision,
trust_remote_code: bool,
**kwargs,
):
if PREFIX_CACHING:
raise NotImplementedError("Vlm do not work with prefix caching yet")
if processor_kwargs is None:
processor_kwargs = {}
self.processor = processor_class.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
**processor_kwargs,
)
self.batch_class = batch_class
super().__init__(
model_id=model_id,
revision=revision,
trust_remote_code=trust_remote_code,
# FIXME: VLM do not work with context chunking yet
support_chunking=False,
**kwargs,
)
@property
def batch_type(self) -> Type[FlashVlmCausalLMBatch]:
return self.batch_class
def max_past(self) -> Optional[int]:
return getattr(self.model.text_model, "max_past", None)
def forward(
self,
batch: FlashVlmCausalLMBatch,
adapter_data: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_current_length
lm_head_indices = batch.prefill_head_indices
speculative_ids = batch.speculative_ids
B, speculative_length = speculative_ids.shape
new_length = speculative_length + 1
new_input_ids = torch.cat(
[input_ids.unsqueeze(-1), speculative_ids], dim=1
).reshape(-1)
arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
arange_int = arange.to(dtype=torch.int32)
new_position_ids = (
position_ids.unsqueeze(-1).expand(B, new_length) + arange
).view(-1)
slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
input_lengths = (
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
).view(-1)
cache_lengths_tensor = (
batch.cache_lengths_tensor.unsqueeze(-1).expand(B, new_length)
).reshape(-1)
# Add Copy the block tables for all members
block_tables = (
block_tables.unsqueeze(1)
.expand(B, new_length, -1)
.reshape(B * new_length, -1)
.contiguous()
)
max_s = max_s + speculative_length
input_ids = new_input_ids
position_ids = new_position_ids
else:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
cache_lengths_tensor = batch.cache_lengths_tensor
max_s = batch.max_current_length
lm_head_indices = batch.prefill_head_indices
if self.model.config.model_type in {"qwen2_vl", "qwen2_5_vl"}:
if position_ids.dim() == 1 and batch.prefilling:
position_ids = self.model.get_position_ids(
input_ids, batch.image_grid_thw
)
batch.position_ids = position_ids
if cu_seqlen_prefill is None and self.max_past() is not None:
# In decode, not prefill, we're actually overwriting the KV-cache
# in a circular buffer mode.
# This makes sure the max_s for the decode pass is correct.
max_s = min(self.max_past(), max_s)
seqlen = Seqlen(
input_lengths=input_lengths,
cache_lengths=cache_lengths_tensor,
cu_seqlen_q=cu_seqlen_prefill,
)
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
pixel_values=batch.pixel_values,
pixel_attention_mask=batch.pixel_attention_mask,
image_sizes=batch.image_sizes,
image_grid_thw=batch.image_grid_thw,
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
if batch.pixel_values is not None:
batch.pixel_values = None
if batch.pixel_attention_mask is not None:
batch.pixel_attention_mask = None
if batch.image_sizes is not None:
batch.image_sizes = None
if batch.image_grid_thw is not None:
batch.image_grid_thw = None
return logits, speculative_logits

View File

@ -1,15 +1,21 @@
from io import BytesIO
from PIL import Image
import torch
import numpy as np
from typing import Iterable, Optional, Tuple, List, Dict
from text_generation_server.pb.generate_pb2 import Request
from io import BytesIO
from PIL import Image
from dataclasses import dataclass
from opentelemetry import trace
from transformers import (
PreTrainedTokenizerBase,
)
from text_generation_server.models.vlm_causal_lm import VlmCausalLMBatch, VlmCausalLM
from text_generation_server.models.flash_vlm_causal_lm import (
FlashVlmCausalLMBatch,
FlashVlmCausalLM,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.layers.attention import Seqlen
@ -18,7 +24,7 @@ tracer = trace.get_tracer(__name__)
@dataclass
class MllamaCausalLMBatch(VlmCausalLMBatch):
class FlashMllamaCausalLMBatch(FlashVlmCausalLMBatch):
image_indices: List[int] = 42
aspect_ratio_ids: Optional[torch.Tensor] = None
aspect_ratio_mask: Optional[torch.Tensor] = None
@ -154,7 +160,7 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
config,
dtype: torch.dtype,
device: torch.device,
) -> "VlmCausalLMBatch":
) -> "FlashVlmCausalLMBatch":
batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
pb.requests, tokenizer, processor, config
)
@ -163,6 +169,13 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
batch.all_input_ids_tensor = batch.all_input_ids_tensor.clamp(
max=config.text_config.vocab_size - 1
)
if isinstance(batch.input_ids, list):
if len(batch) > 1:
input_ids = np.concatenate(batch.input_ids, dtype=np.int64)
else:
input_ids = batch.input_ids[0]
batch.input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
batch.input_ids = batch.input_ids.clamp(max=config.text_config.vocab_size - 1)
if image_inputs is not None:
@ -183,10 +196,10 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
return batch
class MllamaCausalLM(VlmCausalLM):
class FlashMllamaCausalLM(FlashVlmCausalLM):
def forward(
self,
batch: VlmCausalLMBatch,
batch: FlashMllamaCausalLMBatch,
adapter_data: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
@ -198,7 +211,7 @@ class MllamaCausalLM(VlmCausalLM):
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
max_s = batch.max_current_length
lm_head_indices = batch.prefill_head_indices
speculative_ids = batch.speculative_ids
@ -217,8 +230,8 @@ class MllamaCausalLM(VlmCausalLM):
input_lengths = (
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
).view(-1)
prefix_lens_tensor = (
batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length)
cache_lengths_tensor = (
batch.cache_lengths_tensor.unsqueeze(-1).expand(B, new_length)
).reshape(-1)
# Add Copy the block tables for all members
@ -240,8 +253,8 @@ class MllamaCausalLM(VlmCausalLM):
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
prefix_lens_tensor = batch.prefix_lens_tensor
max_s = batch.max_seqlen
cache_lengths_tensor = batch.cache_lengths_tensor
max_s = batch.max_current_length
lm_head_indices = batch.prefill_head_indices
if cu_seqlen_prefill is None and self.max_past() is not None:
@ -250,14 +263,10 @@ class MllamaCausalLM(VlmCausalLM):
# This makes sure the max_s for the decode pass is correct.
max_s = min(self.max_past(), max_s)
input_lengths = input_lengths + prefix_lens_tensor
max_k = (input_lengths + prefix_lens_tensor).max().item()
seqlen = Seqlen(
input_lengths=input_lengths,
prefix_lengths=prefix_lens_tensor,
cache_lengths=cache_lengths_tensor,
cu_seqlen_q=cu_seqlen_prefill,
max_q=max_s,
max_k=max_k,
)
if batch.pixel_values is not None:

View File

@ -4,8 +4,8 @@ import torch
import torch.distributed
from opentelemetry import trace
from typing import Iterable
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
from text_generation_server.models.flash_vlm_causal_lm import (
FlashVlmCausalLMBatch,
image_text_replacement,
)
@ -14,7 +14,7 @@ from text_generation_server.pb.generate_pb2 import Request
tracer = trace.get_tracer(__name__)
class PaliGemmaBatch(VlmCausalLMBatch):
class PaliGemmaBatch(FlashVlmCausalLMBatch):
@classmethod
def batch_tokenized_inputs(
cls, requests: Iterable[Request], tokenizer, processor, config

View File

@ -25,15 +25,21 @@ from text_generation_server.utils.tokens import make_tokenizer_optional
try:
from text_generation_server.models.pali_gemma import PaliGemmaBatch
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
)
from text_generation_server.models.flash_vlm_causal_lm import (
FlashVlmCausalLMBatch,
)
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
VLM_BATCH_TYPES = {
PaliGemmaBatch,
VlmCausalLMBatch,
FlashVlmCausalLMBatch,
IdeficsCausalLMBatch,
FlashMllamaCausalLMBatch,
}
except (ImportError, NotImplementedError):
# These imports can fail on CPU/Non flash.