finished deepsparse_model.py implementation

This commit is contained in:
rsnm2 2023-08-21 15:17:19 +00:00
parent 03fda99ee1
commit f8565cd915
3 changed files with 366 additions and 0 deletions

View File

@ -2095,6 +2095,33 @@
"print(f\"{sequence}{pipeline(sequences=sequence).sequences[0]}\")"
]
},
{
"cell_type": "code",
"execution_count": 279,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using pad_token, but it is not set yet.\n",
"2023-08-20 13:44:57 deepsparse.transformers.pipelines.text_generation INFO Compiling an auxiliary engine to process a prompt with a larger processing length. This improves performance, but may result in additional memory consumption.\n",
"2023-08-20 13:44:58 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"2023-08-20 13:45:23 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n"
]
}
],
"source": [
"pipeline2 = deepsparse.Pipeline.create(\n",
" task=\"text-generation\", \n",
" model_path=\"zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none\",\n",
" use_deepsparse_cache=False,\n",
" prompt_processing_sequence_length=4,\n",
" max_generated_tokens=64,\n",
" sequence_length=128\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,

View File

@ -0,0 +1,127 @@
import numpy, torch
from dataclasses import dataclass
from typing import Optional, Tuple, List, Type, Dict
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
DEEPSPARSE_SEQUENCE_LENGTH = 128
@dataclass
class DeepSparseCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
# TODO: update to handle calculating max_tokens --- needed for CachedBatch
# Decoder values
input_ids_list: List[numpy.ndarray]
past_key_values_list: Optional[List[DeepSparsePastKeyValues]]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "DeepSparseCausalLMBatch":
# parse batch
input_ids_list = []
next_token_choosers = []
stopping_criterias = []
requests_idx_mapping = {}
# setup tokenizer for deepsparse left padding
tokenizer.padding_side = "left"
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
padding, truncation = "longest", False
# loop through items in the batch
for i, r in enumerate(pb.requests):
# get mapping
requests_idx_mapping[r.id] = i
# setup inputs
tokenized_inputs = tokenizer(
r.inputs,
return_tensors="np",
padding=padding,
truncation=truncation,
return_token_type_ids=False,
max_length=DEEPSPARSE_SEQUENCE_LENGTH
)
input_ids_list.append(tokenized_inputs["input_ids"])
# setup sequence generation helpers, capping at DEEPSPARSE_SEQUENCE_LENGTH
# cap stopping parameters to DeepSparse sequence length
input_len = tokenized_inputs["input_ids"].shape[1]
assert DEEPSPARSE_SEQUENCE_LENGTH - input_len > 0
r.stopping_parameters.max_new_tokens = min(
r.stopping_parameters.max_new_tokens,
DEEPSPARSE_SEQUENCE_LENGTH - input_len
)
stopping_criterias.append(StoppingCriteria.from_pb(r.stopping_parameters, tokenizer))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
input_ids_list=input_ids_list,
past_key_values_list=None
)
def __len__(self):
return len(self.requests)
def filter(self, request_ids: List[int]) -> Optional["DeepSparseCausalLMBatch"]:
pass
def concatenate(cls, batches: List["DeepSparseCausalLMBatch"]) -> "DeepSparseCausalLMBatch":
pass
class DeepSparseCausalLM:
def __init__(
self,
deployment_path: str
):
self.tokenizer = AutoTokenizer.from_pretrained(deployment_path)
self.tokenizer.padding_side = "left"
if not self.tokenizer.pad_token:
assert self.tokenizer.eos_token
self.tokenizer.pad_token = self.tokenizer.eos_token
@property
def batch_type(self) -> Type[DeepSparseCausalLMBatch]:
return DeepSparseCausalLMBatch

View File

@ -0,0 +1,212 @@
import numpy as np
from typing import Optional, List, Dict
from deepsparse import Context
from deepsparse.engine import LIB
from deepsparse.pipeline import DEEPSPARSE_ENGINE, create_engine
from deepsparse.transformers.utils.helpers import overwrite_onnx_model_inputs, create_causal_mask
PAST_KEY_VALUES_NAME = "past_key_values"
class DeepSparsePastKeyValues:
def __init__(self):
prev_num_tokens = 0
num_frozen_tokens = 1
self.internal_past_key_values = LIB.kv_cache(prev_num_tokens, num_frozen_tokens)
class DeepSparseDecoderEngine:
def __init__ (
self,
onnx_file_path: str,
sequence_length: int = 1024,
input_ids_length: int = 1,
engine_context: Optional[Context] = None,
):
# update ONNX graph
onnx_file_path, cached_outputs, data_type = overwrite_onnx_model_inputs(
onnx_file_path=onnx_file_path,
batch_size=1,
sequence_length=sequence_length,
input_ids_length=input_ids_length,
)
# compile engine
self.engine = create_engine(
onnx_file_path=onnx_file_path,
engine_type=DEEPSPARSE_ENGINE,
engine_args={"cached_outputs": cached_outputs},
context=engine_context,
)
print(self.engine)
# save utilties
self.past_key_value_dtype = data_type
self.onnx_inputs = self.engine.input_names
self.empty_past_key_values = self.make_empty_past_key_values()
# forward function
def __call__(
self,
engine_inputs: Dict[str, np.ndarray],
past_key_values: DeepSparsePastKeyValues,
val_inputs: bool = True
):
# format input into lists (we pass empty past key values)
inputs = [self.empty_past_key_values[name] if name.startswith(PAST_KEY_VALUES_NAME)
else engine_inputs[name] for name in self.engine.input_names]
# validate inputs formatted correctly
if val_inputs:
self.engine._validate_inputs(inputs)
# run inference, updates past_key_values internally
output = self.engine._eng_net.execute_list_out(
inputs,
past_key_values.internal_past_key_values
)
logits = output[0]
return logits, past_key_values
# empty past kvs (dummy values to be passed around)
def make_empty_past_key_values(self):
past_key_values = {}
for idx, name in enumerate(self.onnx_inputs):
if name.startswith(PAST_KEY_VALUES_NAME):
past_key_values[name] = np.zeros(
self.engine.input_shapes[idx],
dtype=self.past_key_value_dtype
)
return past_key_values
class DeepSparseDecoderModel:
def __init__(
self,
onnx_file_path: str,
sequence_length: int = 1024,
multitoken_length: int = 16,
engine_context: Optional[Context] = None,
singletoken_engine = None,
multitoken_engine = None,
):
self.sequence_length = sequence_length
self.multitoken_length = multitoken_length
if singletoken_engine is not None and multitoken_engine is not None:
self.singletoken_engine = singletoken_engine
self.multitoken_engine = multitoken_engine
else:
self.singletoken_engine = DeepSparseDecoderEngine(
onnx_file_path=onnx_file_path,
engine_context=engine_context,
sequence_length=sequence_length,
input_ids_length=1,
)
self.multitoken_engine = DeepSparseDecoderEngine(
onnx_file_path=onnx_file_path,
engine_context=engine_context,
sequence_length=sequence_length,
input_ids_length=self.multitoken_length,
)
assert "input_ids" in self.singletoken_engine.onnx_inputs
assert "attention_mask" in self.singletoken_engine.onnx_inputs
assert "causal_mask" in self.singletoken_engine.onnx_inputs
assert "positions" in self.singletoken_engine.onnx_inputs
def engine_inputs_for_prefill(
self,
tokens: List[int],
):
assert len(tokens) < self.sequence_length
# split batch into N token_batches
num_batches = len(tokens) // self.multitoken_length
token_batches = [
tokens[i * self.multitoken_length : (i+1) * self.multitoken_length]
for i in range(0, num_batches)
]
# format inputs for each of the N token_batches
for idx, token_batch in enumerate(token_batches):
num_processed_tokens = self.multitoken_length * idx
engine_inputs = {}
engine_inputs["input_ids"] = np.array([token_batch])
# make attention mask from the right
engine_inputs["attention_mask"] = np.zeros((1, self.sequence_length), dtype=np.int64)
engine_inputs["attention_mask"][:, -(self.multitoken_length + num_processed_tokens):] = 1
# make positions (building from the right)
# TODO: handle case when multitoken engine is 1
assert self.multitoken_length > 1
engine_inputs["positions"] = np.arange(
num_processed_tokens, num_processed_tokens + self.multitoken_length
).reshape(1, -1).astype(np.int64)
# make causal mask (building from the right)
engine_inputs["causal_mask"] = create_causal_mask(
input_ids=engine_inputs["input_ids"],
attention_mask=engine_inputs["attention_mask"]
)
yield engine_inputs
def engine_inputs_for_decode(
self,
tokens: List[int],
):
assert len(tokens) < self.sequence_length
engine_inputs = {}
engine_inputs["input_ids"] = np.array([[tokens[-1]]])
engine_inputs["attention_mask"] = np.zeros((1, self.sequence_length), dtype=np.int64)
engine_inputs["attention_mask"][:, -len(tokens):] = 1
engine_inputs["causal_mask"] = create_causal_mask(
engine_inputs["input_ids"],
engine_inputs["attention_mask"]
)
engine_inputs["positions"] = np.array([[len(tokens) - 1]], dtype=np.int64)
return engine_inputs
def decode(
self,
tokens: List[int],
past_key_values: DeepSparsePastKeyValues
) -> (np.ndarray, DeepSparsePastKeyValues):
engine_inputs = self.engine_inputs_for_decode(tokens)
logits, past_key_values = self.singletoken_engine(
engine_inputs,
past_key_values
)
return logits, past_key_values
def prefill(
self,
tokens: List[int],
past_key_values: DeepSparsePastKeyValues
) -> (np.ndarray, DeepSparsePastKeyValues):
tokens_processed = 0
for engine_inputs in self.engine_inputs_for_prefill(tokens):
_, past_key_values = self.multitoken_engine(
engine_inputs,
past_key_values
)
tokens_processed += self.multitoken_length
while tokens_processed < len(tokens):
logits, past_key_values = self.decode(
tokens= tokens[:tokens_processed + 1],
past_key_values=past_key_values
)
tokens_processed += 1
return logits, past_key_values